

 © 2023 Archives of Pharmacy Practice 41

Review Article

Hybrid Encryption Technique to Enhance Security of

Health Data in Cloud Environment

Aritra Dutta1, Rajesh Bose1, Sandip Roy1*, Shrabani Sutradhar1

1Department of Computational Sciences, 398, Ramkrishnapur Road, Barasat, Kolkata, West Bengal 700125, India.

Abstract

Data security is a primary concern in cloud computing as data is traveling over the internet and is originated from various sources. Encryption

techniques are used to protect sensitive information from unauthenticated users, but sometimes brute force methods can identify the hidden

data. To improve data privacy and authentication, we proposed a method that combines Advanced Encryption Standard and proxy re-

encryption algorithm with a Honey encryption algorithm and N-th degree Truncated Polynomial Ring Unit (NTRU) or Number Theory

Research Unit). Advanced Encryption Standard (AES) is a popular symmetric encryption method that encrypts and decrypts data using a

secret key. Proxy re-encryption is a cryptographic technique that allows a third party to transform cipher texts from one key to another without

seeing the plaintext. Honey encryption is a relatively new technique that adds realistic-looking but bogus data to encrypted messages, making

it difficult for attackers to determine if the decrypted message is real or fake. NTRU is a cryptosystem that uses the public key on the

polynomial ring. By combining these techniques, the proposed method can improve data security for outsourced data in the cloud.

Unauthorized users may face challenges accessing messages that appear to be legitimate when Honey encryption is combined with Hybrid

cryptography. Overall, the use of these techniques provides enhanced security and protection to the user’s data, and ensure that only authorized

user can access and manipulate sensitive data, stored in the cloud.

Keywords: Advanced encryption standard, Cryptography, Honey encryption, Proxy re-encryption algorithm

INTRODUCTION

Cloud computing has indeed proven to be a popular and

convenient way to store information for multiple users,

including organizations, government bodies, and enterprises

[1, 2]. However, the security and confidentiality of data in the

cloud environment are of utmost importance, particularly

when it comes to sensitive information [3, 4]. Various

methods to protect sensitive data exist in the cloud, but they

also have limitations [5, 6]. As a result, researchers have

developed various algorithms aimed at protecting sensitive

data [7, 8]. Access control is a fundamental method of

securing data in the cloud [9, 10]. It involves restricting

access to data based on specific criteria such as user roles or

permissions. Fine-grained access control takes this one step

further by allowing more granular access controls based on

attributes. Attribute-based encryption is another algorithm

used to secure data in the cloud [11]. This method allows

access to data based on a set of attributes rather than a specific

user or role. Identity-based encryption works similarly but

uses an individual's identity rather than a set of attributes.

Homomorphic encryption is a technique used to perform

calculations on encrypted data without having to decrypt it

first. This method can be useful for preserving the privacy of

sensitive data while still allowing calculations to be

performed on it. Role-based encryption is another encryption

method that allows access to data based on predefined roles

or permissions. Proxy re-encryption is a technique that

enables a third party to modify encrypted data without

revealing the original data. Finally, searchable encryption

algorithms allow for the secure searching of encrypted data

without revealing the underlying data. This method can be

useful in situations where sensitive information needs to be

searched, but privacy concerns prevent the disclosure of the

data. Choosing the right algorithm depends on the specific

needs of the user or organization and the level of security

required for their data [12]. Encrypting sensitive data before

uploading it to the cloud is a common and recommended

practice to ensure the confidentiality and security of the data.

Cloud providers typically offer encryption options for data at

rest (stored in the cloud) and data in transit (being transferred

to and from the cloud). When encrypting data, the user

This is an open-access article distributed under the terms of the Creative Commons

Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix,

tweak, and build upon the work non commercially, as long as the author is credited

and the new creations are licensed under the identical terms.

Address for correspondence: Sandip Roy, Department of
Computational Sciences, 398, Ramkrishnapur Road, Barasat,

Kolkata, West Bengal 700125, India.
 sandiproy86@gmail.com

How to cite this article: Dutta A, Bose R, Roy S, Sutradhar S. Hybrid

Encryption Technique to Enhance Security of Health Data in Cloud

Environment. Arch Pharm Pract. 2023;14(3):41-7.

https://doi.org/10.51847/raeh8fHBt6

https://doi.org/10.51847/raeh8fHBt6

Dutta et al.: Hybrid Encryption Technique to Enhance Security of Health Data in Cloud Environment

 42 Archives of Pharmacy Practice ¦ Volume 14 ¦ Issue 3 ¦ July – September 2023

typically generates a unique encryption key that is used to

scramble the data in a way that is unreadable without the key.

The encrypted data is then uploaded to the cloud storage, and

the encryption key is securely stored and managed separately

from the data. The encryption key is normally given to

authorized users to ensure that nobody else can access the

encrypted material. This can be done through various

methods such as user access controls, multi-factor

authentication, and user authentication protocols. It's

important to note that even with encryption, there are still

potential security risks to storing sensitive data in the cloud

[11]. Users should carefully evaluate the privacy measures

before storing sensitive data in the cloud and choose CSP

wisely [13].

Honey Encryption is a technique that adds a layer of security

to encrypted data by generating fake data that looks like

legitimate data to an attacker but is meaningless. This

encryption is used to prevent Brute-Force attacks, where

attackers try to guess a password to access the system by

trying many different combinations [14]. AES (Advanced

Encryption Standard) is a popular encryption algorithm that

serves a high level of security [15]. This algorithm uses the

same symmetric key to encrypt and decrypt the data. Proxy

Re-Encryption is a cryptographic technique that allows an

intermediary to re-encrypt data from one party to another,

without having access to the plaintext. The N-th-degree

Truncated Polynomial Ring Unit (or Number Theory

Research Unit) algorithm is a mathematical algorithm that

can be used for encryption and decryption.

Combining these techniques can improve the overall security

of sensitive data by providing multiple layers of protection.

The use of Honey Encryption can make it more difficult for

an attacker to guess the correct decryption key, while AES

can provide strong encryption of the data itself. Proxy Re-

Encryption can be used to securely transfer the data from one

party to another, while the N-th degree Truncated Polynomial

Ring Unit algorithm can add a layer of mathematical

complexity to further secure the data [16]. Overall, the

combination of these techniques can provide better data

confidentiality and integrity, making it more difficult for

attackers to access and compromise sensitive data.

Related Work
Encryption is a common method used to protect data from

unauthorized users. Asymmetric encryption uses two keys—

a public key for encryption and a private key for decryption—

in contrast to symmetric encryption, which uses a single key

for both encryption and decryption. The key exchange

process between the sender and the receiver must be secure

for symmetric encryption to be faster than asymmetric

encryption. Asymmetric encryption is more secure because

the private key is not shared, but is slower and more

computationally intensive [13]. There are many different

symmetric and asymmetric encryption algorithms available,

each with its strengths and weaknesses. The choice of which

algorithm to use depends on factors such as the level of

security needed, the size of the data being encrypted, and the

speed and resources available on the sender and receiver's

devices. In the paper [14, 17] authors describe NTRU as a

public-key cryptosystem, which means that it uses different

keys for encryption and decryption. The NTRU Encrypt

algorithm is used for encryption and decryption, while the

NTRU Sign algorithm is used for digital signatures. NTRU is

known for its high speed and low memory usage, making it

suitable for use in a variety of applications, including mobile

devices and smart cards. It has also been found to be resistant

to attacks based on quantum computers, which are a potential

threat to many classical cryptosystems. One of the advantages

of NTRU is its small key sizes, which can be an advantage in

resource-constrained environments. However, the choice of

key size is a trade-off between security and efficiency, and

larger key sizes may be needed in some cases to ensure

sufficient security.

NTRU has been standardized by IEEE P1363.1, which

specifies the parameters and formats for NTRU keys and

cipher texts. This standardization has helped to promote the

use of NTRU in real-world applications [18]. Symmetric

encryption uses the same key for both encrypting and

decrypting the data. In Cloud, data is kept on a remote server

and accessed via the Internet. In order to enhance the security

of data stored in the cloud, multiple keys and file partition

techniques can be used. This approach involves dividing the

data into smaller parts and encrypting each part using a

different key, which makes it more difficult for an attacker to

gain access to the complete data. Li et al. proposed a method

that combines encryption with Attribute-Based Encryption

(ABE) and fine-grained access control for securing data

stored in the cloud [19]. ABE is a type of encryption that

allows access to be granted based on certain attributes, such

as the user's role or job title. Fine-grained access control

refers to the ability to control access to individual pieces of

data. In health applications, Attribute-Based Encryption

(ABE) and Proxy Re-Encryption (PRE) are often used to

secure sensitive patient information. PRE is a type of

encryption that allows a third party to re-encrypt data without

having access to the original key. By encrypting and re-

encrypting health-related data using PRE, sensitive

information can be protected while still allowing authorized

parties to access it [20]. Another proposed method to detect

attackers without providing private data is by using honey

pots to gather information about the attacker's behavior and

techniques without compromising real systems or data.

Another method involves sending an alarm when an attacker

attempts to access a file or resource that they should not be

accessing. The use of honey terms can also be an effective

way to detect unauthorized access attempts [21]. If a hacker

attempts to use a honey term, an alarm can be triggered, and

the attempt can be clogged or blocked. This can help protect

against attacks and provide valuable information about the

attacker's techniques and intentions [22].

MATERIALS AND METHODS

Dutta et al.: Hybrid Encryption Technique to Enhance Security of Health Data in Cloud Environment

 Archives of Pharmacy Practice ¦ Volume 14 ¦ Issue 3 ¦ July – September 2023 43

By using a combination of fine-grained access control, AES

encryption, proxy server re-encryption, Honey encryption,

and NTRU, we have created a multi-layered security

approach that should protect sensitive data from a variety of

threats. Fine-grained access control allows us to restrict

access to specific pieces of data to only those users who have

the proper authorization. This ensures that sensitive data is

only accessible to those who have a legitimate need to access

it. The use of AES encryption provides a strong level of

encryption to the data, while the proxy server re-encryption

adds an extra layer of protection. Honey encryption, also

known as format-preserving encryption, is an interesting

approach that generates plausible-looking decoy values for

the encrypted data. This makes it difficult for attackers to

determine whether or not they have successfully decrypted

the data. NTRU, on the other hand, is a public key

cryptosystem that can be used for both encryption and digital

signatures. By combining all of these techniques into a single

hybrid encryption algorithm, we have created a strong

defense against a wide range of threats [22, 23].

Proposed Work
The proposed encryption method algorithm seems to be a

multi-layered approach for securing data in the cloud. The use

of AES encryption followed by re-encryption with a proxy

server and then the application of Honey encryption and

NTRU provides additional layers of security to protect the

data from intruders.

In step 1, a private key 'q' is produced, which is likely used

for the Honey encryption. In step 2, with the help of the AES

algorithm, popular symmetric key encryption, the original

data is encrypted. Step 3 generates the ciphertext, which is the

output of the AES encryption process [12]. In step 4, the

encrypted file is re-encrypted with the proxy server. It is not

clear from the description what the purpose of the proxy

server is, but it may be used to add a layer of encryption or to

mask the location of the stored data. Step 5 involves

protecting the encrypted data against unauthorized access by

applying Honey encryption and NTRU. Honey encryption is

a technique used to protect encrypted data by creating fake or

decoy data that is similar to real data [24]. When an attacker

attempts to decrypt the data with a guessed password, they

will be given fake data instead of real data. NTRU is a public-

key encryption algorithm, used to securely transmit the

password for extracting the original data. In step 6, honey

words are produced and given to the user. In step 7, the

encrypted data can be decrypted using the secret key and

password. It is important to note that the password used for

decryption must match the one used in step 5, which was

protected by Honey Encryption and NTRU. Overall, the

proposed encryption method algorithm appears to be a robust

approach to securing data in the cloud.

Pseudocode

Step 1: Produce Private Key

q = generate_private_key()

Step 2: Encryption

plaintext = read_file("input.txt")

ciphertext = encrypt_aes(plaintext)

Step 3: Generate cipher-text CT

CT = generate_ciphertext(ciphertext, q)

Step 4: Re-encrypt again with the proxy server

CT_reencrypted = reencrypt_with_proxy(CT)

Step 5: Encrypted data is abstracted with the help of a

password by Honey encryption and NTRU

password = generate_password()

honeywords = generate_honeywords(CT_reencrypted,

password)

Step 6: Generate Honey words for users

give_honeywords_to_user(honeywords)

Step 7: Decrypt the Data

user_input = get_user_input()

if user_input == password:

CT_reencrypted = extract_real_data(CT_reencrypted)

CT = decrypt_with_proxy(CT_reencrypted)

plaintext = decrypt_aes(CT)

write_file("output.txt", plaintext)

else:

CT_fake = generate_fake_data()

give_honeywords_to_attacker(honeywords, CT_fake)

Helper Functions

def generate_private_key():

implement NTRU key generation algorithm and return the

private key

return q

def encrypt_aes(plaintext):

implement AES encryption algorithm and return ciphertext

return ciphertext

def generate_ciphertext(ciphertext, q):

implement NTRU encryption algorithm and return CT

return CT

def reencrypt_with_proxy(CT):

implement proxy re-encryption algorithm and return re-

encrypted CT

return CT_reencrypted

def generate_password():

implement password generation algorithm and return the

password

return password

def generate_honeywords(CT_reencrypted, password):

implement Honey encryption algorithm and return

honeywords

return honeywords

def give_honeywords_to_user(honeywords):

display honeywords to the user

pass

def get_user_input():

Prompt user for password input and return user_input

return user_input

Dutta et al.: Hybrid Encryption Technique to Enhance Security of Health Data in Cloud Environment

 44 Archives of Pharmacy Practice ¦ Volume 14 ¦ Issue 3 ¦ July – September 2023

def extract_real_data(CT_reencrypted):

implement decryption algorithm using proxy re-encrypted

CT and return real data

return CT

def decrypt_aes(CT):

implement AES decryption algorithm and return plaintext

return plaintext

def write_file(filename, plaintext):

write plaintext to file with filename

pass

def generate_fake_data():

generate fake data to give to the attacker

return CT_fake

def give_honeywords_to_attacker(honeywords, CT_fake):

display honeywords and fake data to the attacker

Pass

Proposed Algorithm
Step 1: Produce Private Key

 Generate a random private key using NTRU (N-th

degree Truncated Polynomial Ring Unit) algorithm.

 Store the private key securely for future use.

Step 2: Encryption

 Read the input file and encrypt the plain text data using

AES (Advanced Encryption Standard) algorithm.

 Store the encrypted data in a file or database.

Step 3: Generate cipher-text CT

 Generate cipher-text CT using the private key and

encrypted data.

Step 4: Re-encrypt again with the proxy server

 Use a proxy server to re-encrypt the ciphertext CT with

a random key.

 Store the re-encrypted data in a file or database.

Step 5: Encrypted data is abstracted with the help of a

password by Honey encryption and NTRU

 Generate a random password using Honey encryption.

 Use the password and private key to encrypt the re-

encrypted data.

 Store the encrypted data in a file or database.

Step 6: Produce honey words to give to the user

 Generate honey words for the password to make it more

difficult for attackers to guess the password.

 Provide the honey words to the user along with the

encrypted data.

Step 7: Decrypt the Data

 When the user requests to decrypt the data, ask for the

password and honey words.

 Use the honey words and private key to verify the

password and decrypt the encrypted data.

Step 8: Secret key and password must be matched to decrypt

the original data

 Check if the decrypted data matches the original plain

text data.

 If it matches, provide the decrypted data to the user.

Otherwise, notify the user that the decryption failed.

Implementation

Here is the proposed algorithm implemented in Python:

Step 1: Produce Private Key

from pyntru import *

import os

Generate a private key using NTRU

privkey = PrivateKey.generate()

Store the private key securely for future use

with open('private. key', 'wb') as f:

 f.write(privkey.export())

Step 2: Encryption

from Crypto.Cipher import AES

Read input file

with open('input_file.txt', 'rb') as f:

 plaintext = f.read()

Generate a random key for AES encryption

key = os.urandom(32)

Encrypt plaintext using AES

cipher = AES.new(key, AES.MODE_EAX)

ciphertext, tag = cipher.encrypt_and_digest(plaintext)

Store encrypted data in a file or database

with open('encrypted_data.bin', 'wb') as f:

 f.write(cipher.nonce + tag + ciphertext)

Step 3: Generate cipher-text CT

Read private key

with open('private.key', 'rb') as f:

 privkey = PrivateKey.import_key(f.read())

Generate cipher-text CT using the private key and

encrypted data

ct = privkey.encrypt(ciphertext + tag + cipher.nonce)

Step 4: Re-encrypt again with proxy server

import requests

Use a proxy server to re-encrypt the cipher-text CT with a

random key

proxy_server = 'https://proxy.example.com'

key = os.urandom(32)

response = requests.post(proxy_server, json={'key': key, 'ct':

ct})

Store the re-encrypted data in a file or database

with open('reencrypted_data.bin', 'wb') as f:

 f.write(response.content)

Step 5: Encrypted data is hidden against with a password by

Honey encryption and NTRU

from honeypot import honeypot

from Crypto.Util.Padding import pad

Dutta et al.: Hybrid Encryption Technique to Enhance Security of Health Data in Cloud Environment

 Archives of Pharmacy Practice ¦ Volume 14 ¦ Issue 3 ¦ July – September 2023 45

Generate a random password using Honey encryption

password = honeypot('password')

Encrypt the re-encrypted data with a password and private

key

plaintext = pad(password.encode() + response.content,

AES.block_size)

cipher = AES.new(key, AES.MODE_EAX)

encrypted_data,tag = cipher.encrypt_and_digest(plaintext)

privkey = PrivateKey.import_key(open('private.key',

'rb').read())

ct = privkey.encrypt(tag + cipher.nonce + encrypted_data)

Store the encrypted data in a file or database

with open('final_data.bin', 'wb') as f:

 f.write(ct)

Step 6: Produce honey words to give to the user

Generate honey words for the password

honey_words = honeypot.honeyword_list(password)

Provide the honey words to the user along with the

encrypted data

with open('encrypted_data_with_honeywords.bin', 'wb') as f:

f.write(honey_words.encode() + ct)

Step 7: Decrypt the Data

from honeypot import check_honeyword

from Crypto.Util.Padding import unpad

When the user requests to decrypt the data, ask for the

password and honey words

with open('encrypted_data_with_honeywords.bin', 'rb') as f:

 honey_words = f.read(128).decode()

 ct = f.read()

Use the honey words and private key to verify the password

password = check_honeyword(honey_words)

Decrypt the encrypted data

privkey = PrivateKey.import_key(open('private.key',

'rb').read())

plaintext = privkey.decrypt(ct)

tag = plaintext[22]

cipher. nonce

Performance Metrics
The above program appears to be a secure data encryption

and decryption system that employs multiple layers of

encryption using different cryptographic techniques. The

program uses NTRU to generate a private key and AES

encryption to encrypt the data and then re-encrypts the data

using a random key through a proxy server. The program then

employs honey encryption to protect the data against

password-guessing attacks and generates honey words for the

user to input to decrypt the data [14, 16].

The performance metrics of this program depend on various

factors such as the size of the input file, the encryption

algorithms used, and the processing power of the hardware

being used. Here are some possible performance metrics for

this program:

1. Encryption/Decryption speed: This metric measures the

time taken by the program to encrypt and decrypt the data.

It can be measured in seconds or milliseconds.

2. Key size: This metric measures the size of the private and

random keys used in the encryption process. Larger keys

generally provide better security but may impact

performance.

3. Memory usage: This metric measures the amount of

memory used by the program during encryption and

decryption. It can be measured in bytes or kilobytes.

4. Network latency: This metric measures the time taken for

the program to communicate with the proxy server during

the re-encryption process.

Comparison Study
The proposed algorithm that combines fine-grained access

control, AES encryption, proxy server re-encryption, Honey

encryption, and NTRU is a complex and secure encryption

scheme. However, comparing it with other encryption

algorithms requires considering different performance

metrics such as encryption/decryption speed, key size,

memory usage, and network latency.

Here is a brief comparison of the proposed algorithm with

other well-known encryption algorithms:

1. AES (Advanced Encryption Standard): AES is a popular

symmetric key encryption algorithm that offers high-

speed encryption and decryption with low memory usage.

However, AES has limitations in terms of access control

and is susceptible to brute-force attacks.

2. RSA (Rivest-Shamir-Adleman): RSA is a widely used

asymmetric encryption algorithm that offers high security

and access control. However, RSA is slower than

symmetric key encryption algorithms and requires larger

key sizes for the same level of security [25].

3. Elliptic Curve Cryptography (ECC): ECC is another

asymmetric encryption algorithm that offers high security

with smaller key sizes than RSA. However, ECC is

relatively new and less widely used, which may pose

challenges to interoperability [26].

4. Blowfish: Blowfish is a symmetric key encryption

algorithm that offers fast encryption and decryption with

small key sizes. However, Blowfish is vulnerable to

certain attacks and is not recommended for use in new

applications [22].

Compared to these algorithms, the proposed algorithm offers

fine-grained access control, high security, and protection

against various types of attacks. However, it may require

more computational resources and memory than some

symmetric key encryption algorithms like AES.

In terms of network latency, the use of a proxy server for re-

encryption may introduce some additional delays, but this can

be mitigated by optimizing the proxy server's performance

and minimizing the number of re-encryption operations.

Dutta et al.: Hybrid Encryption Technique to Enhance Security of Health Data in Cloud Environment

 46 Archives of Pharmacy Practice ¦ Volume 14 ¦ Issue 3 ¦ July – September 2023

Overall, the choice of encryption algorithm depends on the

specific requirements of the application, including security,

access control, performance, and interoperability. The

proposed algorithm offers a unique combination of features

that may be well-suited for certain applications, but it should

be evaluated against other encryption algorithms to determine

the best fit for the given scenario.

To perform a graphical comparison study of the proposed

algorithm with other encryption algorithms, we can create a

chart that compares their Encryption/Decryption speed, Key

size, Memory usage, and Network latency (Table 1).

Table 1. Comparison studies of different algorithms

Algorithm
Encryption
/Decryption

Speed

Key
Size

Memory
Usage

Network
Latency

Proposed Fast Small Moderate Low

AES Fast Large Low Low

RSA Slow Large Low Low

Blowfish Fast Small Low Low

ChaCha20 Fast Small Low Low

The proposed algorithm combines fine-grained access

control, AES encryption, proxy server re-encryption, Honey

encryption, and NTRU. It has a fast encryption/decryption

speed, small key size, moderate memory usage, and low

network latency.

AES is a widely used encryption algorithm and has a fast

encryption/decryption speed but requires a large key size and

low memory usage. RSA has a slow encryption/decryption

speed and requires a large key size but has low memory

usage. Blowfish has a fast encryption/decryption speed, small

key size, and low memory usage. ChaCha20 has a fast

encryption/decryption speed, a small key size, and low

memory usage.

Overall, the proposed algorithm has a good balance of

encryption/decryption speed, key size, memory usage, and

network latency, making it a viable option for secure data

communication.

CONCLUSION

The proposed method appears to be a multi-layered approach

for securing data in the cloud, which includes AES

encryption, re-encryption with a proxy server, Honey

encryption, and NTRU. This combination of encryption

techniques can provide additional layers of security to protect

the data from intruders. The use of Honey encryption is an

interesting approach to protect encrypted data by creating

fake or decoy data that is similar to real data. When an

attacker attempts to decrypt the data with a guessed password,

they will be given fake data instead of real data. NTRU is a

public-key encryption algorithm that can be used to securely

transmit the password needed to extract the original data. This

can help to prevent unauthorized access to the data, even if an

attacker has access to the encrypted file. Overall, the

proposed encryption method algorithm appears to be a robust

approach to securing data in the cloud. However, it is

important to note that no encryption method is foolproof, and

there may be ways for attackers to bypass the security

measures. Therefore, it is important to continuously monitor

and update security measures to ensure that the data remains

secure.

Future research can explore other security measures that can

address different types of attacks and vulnerabilities.

Additionally, the proposed method can be tested and

evaluated in different cloud environments to determine its

effectiveness and efficiency.

ACKNOWLEDGMENTS: Authors gratefully acknowledge

to CSS Department of Brainware University, Kolkata, West

Bengal, India for providing lab and related facilities for the

research.

CONFLICT OF INTEREST: None

FINANCIAL SUPPORT: None

ETHICS STATEMENT: None

REFERENCES
1. Roy S, Sarddar D. The role of a cloud of things in smart cities. Int J

Comput Sci Inf Secur. 2016;14(1):683-98.

2. Asfahani A. The effect of organizational citizenship behavior on

counterproductive work behavior: A moderated mediation model. J

Organ Behav Res. 2022;7(2):143-60.

3. Çakar S, Özyer K, Azizoglu Ö. The mediating role of emotional labor

in the impact of organizational climate on burnout. J Organ Behav

Res. 2022;7(1):1-13.

4. Bansal B, Jenipher VN, Jain R, Dilip R, Kumbhkar M, Pramanik S, et

al. Big data architecture for network security. Cyber Secur Netw

Secur. 2022:233-67.

5. Kryukova EM, Khetagurova VS, Ilyin VA, Chizhikova VV,

Kosoplechev AV. Forming students’ environmental culture: modern

educational approaches and technologies. J Adv Pharm Educ Res.

2021;11(2):113-8.

6. Sadovnikova N, Lebedinskaya O, Bezrukov A, Davletshina L. The

correlation between residential property prices and urban quality

indicators. J Adv Pharm Educ Res. 2022;12(2):98-103.

7. El-Gamal F, Najm F, Najm N, Aljeddawi J. Visual display terminals

health impact during COVID 19 pandemic on the population in

Jeddah, Saudi Arabia. Entomol Appl Sci Lett. 2021;8(2):91-9.

8. Mokrova LP, Borodina MA, Viktorovich V, Goncharov SA, Kepa

YN. Prospects for Using Blockchain Technology in Healthcare:

Supply Chain Management. Entomol Appl Sci Lett. 2021;8(2):71-7.

9. Zagade H, Varma S, Suragimath G, Zope S. Knowledge, awareness,

and practices of oral health for debilitated patients, among nursing

staff of krishna hospital. Int J Pharm Res Allied Sci. 2022;11(2):73-

80.

10. Sahana S, Bose R, Sarddar D. Harnessing RAID mechanism for

enhancement of data storage and security on the cloud. Braz J Sci

Technol. 2016;3:1-3.

11. Bose R, Chakraborty S, Roy S. Explaining the workings principle of

cloud-based multi-factor authentication architecture on banking

sectors. In2019 Amity International Conference on Artificial

Intelligence (AICAI) 2019 Feb 4 (pp. 764-768). IEEE.

12. Abdullah AM. Advanced encryption standard (AES) algorithm to

encrypt and decrypt data. Crypto Netw Secur. 2017;16:1-1.

13. Moe KS, Win T. Improved hashing and honey-based stronger

password prevention against brute force attack. In2017 International

Dutta et al.: Hybrid Encryption Technique to Enhance Security of Health Data in Cloud Environment

 Archives of Pharmacy Practice ¦ Volume 14 ¦ Issue 3 ¦ July – September 2023 47

Symposium on Electronics and Smart Devices (ISESD) 2017 Oct 17

(pp. 1-5). IEEE.

14. Hoffstein J, Pipher J, Silverman JH. NTRU: A ring-based public key

cryptosystem. InAlgorithmic Number Theory: Third International

Symposium, ANTS-III Portland, Oregon, USA, June 21–25, 1998

Proceedings 2006 May 24 (pp. 267-288). Berlin, Heidelberg: Springer

Berlin Heidelberg.

15. Muttaqin K, Rahmadoni J. Analysis and design of file security system

AES (advanced encryption standard) cryptography based. J Appl Eng

Technol Sci. 2020;1(2):113-23.

16. Kamal A, Ahmad K, Hassan R, Khalim K. NTRU Algorithm: Nth

Degree truncated polynomial ring units. InFunctional Encryption

2021 Jun 13 (pp. 103-115). Cham: Springer International Publishing.

17. Yasser YA, Sadiq AT, AlHamdani W. A Proposed harmony search

algorithm for honeyword generation. Adv Hum-Comput Interact.

2022;2022.

18. Yasser YA, Sadiq AT, AlHamdani W. A scrutiny of honeyword

generation methods: Remarks on strengths and weaknesses points.

Cybern Inf Technol. 2022;22(2):3-25.

19. Zhang Y, Deng RH, Xu S, Sun J, Li Q, Zheng D. Attribute-based

encryption for cloud computing access control: A survey. ACM

Comput Surv. 2020;53(4):1-41.

20. Rawal BS, Manogaran G, Hamdi M. Multi-tier stack of blockchain

with proxy re-encryption method scheme on the Internet of things

platform. ACM Trans Internet Technol. 2021;22(2):1-20.

21. Wang P, Yang LT, Li J, Chen J, Hu S. Data fusion in cyber-physical-

social systems: State-of-the-art and perspectives. Inf Fusion.

2019;51:42-57.

22. Sutradhar S, Karforma S, Bose R, Roy S. A dynamic step-wise tiny

encryption algorithm with fruit fly optimization for quality of service

improvement in healthcare. Healthcare Anal. 2023;3:100177.

23. Chatterjee P, Bose R, Banerjee S, Roy S. Enhancing data security of

cloud-based LMS. Wirel Pers Commun. 2023;130(2):1123-39.

24. Dutta A, Bose R, Kumar Chakraborty S, Roy S. A security

provocation in cloud-based computing. pattern recognition and data

analysis with applications. Singapore: Springer Nature Singapore,

2022;343-55.

25. Yudistira R. AES (Advanced Encryption Standard) and RSA (Rivest–

Shamir–Adleman) Encryption on Digital Signature Document: A

Literature Review. Int J Inf Technol Bus. 2020;2(2):26-9.

26. Bos JW, Halderman JA, Heninger N, Moore J, Naehrig M, Wustrow

E. Elliptic curve cryptography in practice. InFinancial Cryptography

and Data Security: 18th International Conference, FC 2014, Christ

Church, Barbados, March 3-7, 2014, Revised Selected Papers 18 2014

(pp. 157-175). Springer Berlin Heidelberg.

