Impacts of Educational Interventions on Glycemic Control in Children and Adolescents with Type 1 Diabetes Mellitus

Sasha Muhammed Elamin¹, Adyani Md Redzuan¹, Siti Azdiah Abdul Aziz¹, Syazwani Hamdan¹, Masyarah Zulhaida Masmuzidin², Noraida Mohamed Shah¹*

¹Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Malaysia. ²Edutainment Industrial Revolution 4.0 (EIR 4.0), Creative Multimedia and Animation Section, Malaysian Institute of Information Technology, Universiti Kuala Lumpur, Malaysia.

Abstract

Although insulin treatment has been proven effective in controlling blood glucose among type 1 diabetes mellitus (T1DM) children and adolescents, treatment adherence remains suboptimal throughout the years. Therefore, education intervention is a promising approach to improve insulin therapy adherence, thus improving glycemia control in children with T1DM. This review summarized the findings of available interventions and potential outcomes of education interventions among children and adolescents living with T1DM. The scoping study framework developed by Arksey and O'Malley was used in retrieving and reviewing relevant publications (2000 – 2021), thus, emphasizing the variations in studies, interventions were multidisciplinary and reported improvements in patients' glycated hemoglobin (HbA1c), with or without enhancements in other areas. In conclusion, various patient education interventions positively impact children and adolescents living with T1DM. The findings highlighted the efficacy of patient education interventions in ameliorating glycemic control. by reducing HbA1c, enhancing behavioral outcomes, improving psychological outcomes, patients' health state and quality of life (QOL).

Keywords: Children, Adolescents, Type 1 diabetes, Education

INTRODUCTION

In 2019, approximately 600,900 children below the age of 15 were diagnosed with type 1 diabetes (T1DM) worldwide. Furthermore, T1DM among these particular populations could increase globally to 98,200 cases annually [1]. T1DM therapy aims to prevent cardiovascular morbidity and mortality through intensive glycemic control [2]. Moreover, adherence to diabetes management improves glycemic control independent of age, sociodemographic, or disease characteristics [3]. Nevertheless, adherence to treatment among T1DM children and adolescents is only 30% to 70% [4].

Previous T1DM studies among children have revealed that educating the patient and family, apart from being more cost effective for the patient's caregivers, intensive diabetes care management and close communication with health care professionals were associated with a decrease in hospitalisations and emergency department visits [5]. Notably, the information provided and delivery style should be pediatric-friendly, where the content ranges from basic diabetes management skills that address the family dynamics and concerns involving the whole family [5]. Several contributing factors concerning gaps between guidelines and clinical practice have been identified, including the lack of medical training, educational tools familiarity with guidelines, and time constraints [6]. Patient engagement describes the process where patients are actively involved in deciding their course of treatment, identifying factors influencing their lives, and taking action towards positive changes [7]. This concept is primary in patients' self-management and realizing medical communication and relationship goals [8]. Therefore, patient education is crucial in the patient engagement intervention to support children and adolescents living with diseases [9]. In addition, various studies have reported a high interest in obtaining knowledge about diseases and their impacts on daily life among Children and adolescents with chronic medical conditions such as T1DM [10].

Address for correspondence: Noraida Mohamed Shah, Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Malaysia. noraida_mshah@ukm.edu.my

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, tweak, and build upon the work non commercially, as long as the author is credited and the new creations are licensed under the identical terms.

How to cite this article: Elamin SM, Redzuan AM, Abdul Aziz SA, Hamdan S, Masmuzidin MZ, Mohamed Shah N. Impacts of Educational Interventions on Glycemic Control in Children and Adolescents with Type 1 Diabetes Mellitus. Arch Pharm Pract. 2023;14(4):13-31. https://doi.org/10.51847/4PWgp3vYN3

There are multiple forms of education interventions intended for children and adolescents, often recognized as complex interventions [11], led by healthcare providers or peers for groups or individuals [12]. Group sessions are effective in promoting health policies in many Western countries and essential in improving patients' self-management of chronic disease [13].

It is deemed urgent to clarify and assess the key components and impacts of patient education interventions to establish a successful program. Several publications have highlighted the evidence concerning the potential benefits of this intervention for children and adolescents with diabetes [9], but none of these studies specifically reported how the program affects young individuals with T1DM. Therefore, this review provides a comprehensive summary of published assessments and potential outcomes of patient education interventions among children and adolescents with T1DM.

This review assessed the literature in order to address the following questions:

- 1. What study design, type of participants, and interventions are suitable for patient education programs involving T1DM children and adolescents?
- 2. What are the possible outcomes of patient education interventions for children and adolescents living with T1DM?

MATERIALS AND METHODS Search Strategy

Intervention studies from 2000 to 2021 that assessed glycemic control as glycated hemoglobin (hba1c) and/or other diabetes-related outcomes among children or adolescents with T1DM were identified from six databases: pubmed, Scopus, Scholar, Science Direct, Cochrane, and CINAL. The Arksey and O'Malley approach was used as a systematic method to identify the effects of patient education interventions on glycemic control in children and adolescents with T1DM [14]. This paper selected the scoping review approach, where various study designs were considered to answer the research questions and ultimately achieve a thorough review of the available literature [15].

First, 5015 articles were identified, and 4900 studies that did not fulfil the requirements for inclusion were ommitted (**Figure 1**). A total of 66 articles were later excluded. In addition, assessments of previous systematic reviews on similar topics led to the inclusion of six more studies in the current review. The disagreements about article inclusion were resolved via group discussion to reach a consensus. For example, five studies that included patients above 18 years old were considered in this review since the overall sample population consisted of children, adolescents, and young adults up to the age of of 25. A total of 49 articles were included in this review.

Figure 1. Flow diagram of identified, screened, and extracted studies

The literature search was performed based on the patient, intervention, comparison, and outcomes (PICO) principles. The following keywords were selected for the literature search: "children", "intervention", "education", "type 1 diabetes mellitus", "glycemic control", and "insulin".

This scoping review was conducted according to the following specifications:

- Population: Children and adolescents
- *Intervention:* physical or virtual patient education intervention led by healthcare professionals and/or trained participants focusing on enhancements of patients' self-management, glycemic control, and general welfare.
- Comparisons: routine treatment, different interventions, or pre/post-intervention effects.
- Outcomes: glycemic control reflected by hba1c and other impacts on patients' learning, behavioral, psychological, health status, and QOL.

The inclusion criteria for this review are presented as follows: 1) qualitative and quantitative studies, 2) published in English, and 3) focused on interventions to improve hba1c in children and/or adolescents with T1DM (at least one year before intervention). Meanwhile, the exclusion criteria were studies that did not include children or adolescents, included children in critical care or comorbidities, and did not consider hba1c as an outcome.

Data Extraction

This review highlighted how patient education interventions influence patients' hba1c levels. The studies included in this review conducted education interventions to improve diabetes outcomes in children and adolescents with type 1 diabetes, including their clinical, behavioral, psychological, health status, and QOL.

First, a data extraction sheet was prepared after deliberation among the authors. Two authors were then assigned to extract the relevant information according to the datasheet: general details [author(s), publication year, and country]; study population (age, gender); type of study (study design, duration); intervention program (type and description of intervention) and study findings (hba1c, learning, behavioral, psychological, patients' QOL, and health status). Finally, the findings were validated by another co-author and organised in accordance with the review's main questions (**Table 1**).

2	S. Altundag <i>et al.</i> [17] 2016 Turkey	Pre- and post-test control groups 9 months	38 18 T: 20 C 50%F:50%M 12 - 14 years	Pediatric endocrine clinic at a university hospital	Intervention: Peer education-based intervention Description: Introductory information about T1DM in adolescents with diabetes training sessions (warm-up games, narrating, question-answer, demonstration, discussion, and role-play) followed by providing a training guide. Mode: group Personnel: dieticians, nurses, and child psychiatrist Duration: 6 months Delivery method: face-to-face	Significant reduction from 10.23 ± 2.39 to 8.02 ± 1.66 (p< 0.001)	Improved diabetes knowledge, self-esteem, & social support
3	M. Edraki <i>et al.</i> [18] 2020 Iran	Randomized control trial 3 months	96 48 T: 48 C 62% F: 38%M 12 - 18 years	Center for diabetic patients, affiliated with Shiraz University of Medical Sciences	Intervention: Peer education-based intervention Description: 4 peer-led workshops on diabetic self-care behaviours. Mode: group with parents Personnel: peer educators (Supervised by DM- specialists) Duration: 1 month Delivery method: face-to-face	Significant reduction (p<0.001)	Improved Self-care
4	A. F. Walker <i>et al.</i> [19] 2020 USA	Randomized controlled study 9 months	42 teens 22 T: 20 C 77% F:23% M 11 - 17 years	Pediatric endocrinology clinic	Intervention: Peer mentorship program Description: Several key exposures were included in the All for ONE (Outreach, Networks, and Education) mentoring programme, including social events infused with diabetes education, daily SMS text reminders for mentors and mentees for blood glucose monitoring, weekly text exchanges between mentors and mentees, and clinic visits. Mode: group Personnel: college student mentors Duration: 9 months Delivery method: face-to-face and text-messages	No significant difference (p=0.38)	Improved psychosocial outcome, QOL (Satisfaction)
5	S. Likitmaskul <i>et al.</i> [20] 2002 Thailand	Cohort study 6 months	52 24 T: 28 C Both Genders (unspecified) 7 - 9 years	Pediatrics department / /hospital	Intervention: Intensive diabetes education program Description: Multidisciplinary The multidisciplinary management team provides self-management training including information about T1DM, insulin therapy, diet and exercise, monitoring, interpretation, and self- management of hypoglycemia. Mode: group with families Personnel: pediatric endocrinologists, dieticians, psychologists, and nurses Duration:10-12 days Delivery method: face-to-face and phone call	Significant reduction (T = 9.19%) C = 11.54%) (p=0.03)	Less, by half, hospital stay or complications
9	Y.C. Wang <i>et al.</i> [21] 2010 U.S.A.	Randomized controlled trial 9 months	44 21 T: 23 C 50%F: 50%M 12 - 18 years	Children's Medical Center	Intervention: motivational interviewing (MI)—based diabetes education versus structured diabetes education education (MI) Vs structured diabetes education (SDE) group educational-based program Description: 2-day workshop with either SDE or MI recommended by the American Diabetes Association's (ADA) core content on medication, monitoring, and acute complicationsmi using core content recommended by the American Diabetes Association (ADA) on medication, monitoring, acute complications, plus two intervention sessions on lifestylelifestyle two intervention sessions. And two phone follow-ups Mode: group Personnel: diabetes educators/physicians Duration: 6 months Delivery method: face-to-face and phone calls	Significant Reduction (p=0.03)	Improved QOL

10	C. P. Hawkes <i>et al.</i> [25] 2019 USA	Retrospective cohort 2 years	675 391 T: 284 C 44%F: 56% M <18 years	Pediatrics hospital	Intervention: A structured education program Description: A 10-hour education curriculum was used to provide participants with intense coaching targeted to their family lifestyle and readiness to take independence, discussed nutrition-related challenges, reinforced carbohydrate Counting and dietary management. Mode: group with family Personnel: primary outpatient clinician, inpatient nurses, and certified diabetes educator Duration: 1 year Delivery method: face-to-face	Significant reduction in hba1c levels in the T1Y1 group; In 6 months: 6.7%, (p<0.001) In 12 months: 7.3%, (p<0.001) In 18 months: 7.6%, (p=0.01) In 24 months: (p=0.14)	Increased time spent in a clinic with a Certified Diabetes Educator (CDE) in the first year (p -0.001) - Technology was more utilized in the first year -More patients used CGM (p = 0.001) and insulin pump (p = 0.2)
11	F. Ramírez-Mendoza <i>et al.</i> [26] 2020 Mexico	Pre- and post- Test (no control) 6 months	121 ND 58.7%F:41.3%M 0 - 18 years	Local health centres, general hospitals, paediatric hospitals, the National Institutes of Health, children obesity clinics, and private hospitals referred patients.	Intervention: multidisciplinary Educational program Description: The PAANDA program (a program of care for adolescents and children with diabetes mellitus) educates the patient how to correct blood glucose levels and urges them to regularly test glucose levels Mode: group with caregiver Personnel: social workers, pediatric nurses, and endocrinologists Duration:6 months Delivery method: face-to-face	Significant reduction average -1.8%, (p=0.018) Highest reduction occurred at ages 8-13 years by 2.3%	Reduction of incidences of glycemic complications
12	R. S. D'Souza <i>et al.</i> [27] 2021 UK	Retrospective- questionnaire-based service evaluation (pre-SEREN/post-SEREN) 12 months	221 115T:106C 49.8%:50.2% 4 - 17 years	Diabetes clinic/hospital	Intervention: Structured Education Reassuring Empowering Nurturing (SEREN) Educational program for cyps Description: SEREN program includes; Understanding the aetiology of T1DM, carbohydrate counting, insulin dosage adjustment, hypoglycemia management, sick-day plans, management of diabetic ketoacidosis, complications, and impact of exercise Mode: group with parents Personnel: pediatric diabetes services (specialists, nurses, and dieticians) Duration: 6 weeks Delivery method: face-to-face	No change in hba1c	Improved diabetes knowledge and QOL
13	G. Karagüzel <i>et al.</i> [28] 2005 Turkey	Pre- and post-test control groups 12 months	25 64%F:36%M 7-17 years	Camp	Intervention: Summer camp and intensive insulin treatment Description: Techniques for injecting insulin, blood glucose monitoring, and recognition and management of hypoglycemia, hyperglycemia, and ketosisthe education program included insulin injection techniques, blood glucose monitoring, recognition and management of hypoglycemia, hyperglycemia, and ketosis, insulin dose modification depending on food and exercise plans, diabetic nutrition, carb counting, complications of diabetes, the importance for controlling diabetes, and novel therapies to test glycemic controldosage adjustment based on nutrition and activity schedules, diabetic nutrition, carbohydrate counting, complications of diabetes, importance of diabetes control and new therapies to test glycemic control, were all covered in the educational programme Mode: group Personnel: pediatric endocrinologists, nurses, dieticians, interns, and psychologists Duration: 7 days Delivery method: face-to-face	Significant reduction of HBA1c levels from pre-camp baseline up to 6 and 12 months; (about -1.5%) (p<0.05)	Significant improvement in knowledge and self- management at 6 and 12 months of camp. Significant improvement in total generic QOL scores $(p = 0.04)$

18	S. Cook <i>et al.</i> [33] 2002 USA	Randomized control trial 6 months	53 26 T: 27 C 53% F: 47% M 13 - 18 years	Diabetes clinics/ childrenchildren's hospital	Intervention: Choices Diabetes Program Description: Behavioral intervention- 2-hours six-weekly behavioral sessions included: 1. Making decisions and maintaining a record 2. Making food planning 3. Insulin timing; getting back on track; 5. Decision-making; and 6. Handling the psychological impacts of DM.1. Making choices and keeping records 2. Planning meals 3. Timing insulin 4. Getting back on track 5. Making decisions and 6. Dealing psychologically with the impact of DM. Mode: group w/parents Personnel: physician consultants, psychologists, and dietician Duration: 6 weeks Delivery method: face-to-face	Significant reduction on in hbalc after 6 months of intervention from 8.9 to 8.3%, (p<0.01)	 Significant increase in problem problem-solving score from pre-to post- program No significant differences in knowledge
19	Lehmkuhl HD <i>et al.</i> [34] 2010 USA	RCT 3 months	32 18 T: 14 C 71.9%F:28.1%M 9 -17 years	Virtually	Intervention: Telehealth Behavior Therapy Description: Behavioral intervention- Phone calls (sessions) with the therapist, discussing self-care activities which encourage adaptive self-care (goals for managing diabetes) and identifying potential obstacles to management and education. Discussing self-care activities and reinforcing adaptive self-care (diabetes goals), and identifying potential barriers to management and education. Mode: individual with families Personnel: research coordinators, assistants, and clinical psychology interns Duration: 12 weeks Delivery method: phone calls	Significant reduction in hba1c by 0.74 compared to 0.09 in the Waitlist (p = 0.03)	Increased Diabetes self-management profile (DSMP) (p< 0.01)
20	R. Whittemore <i>et al.</i> [35] 2010 USA	Multiphase- randomized control trial (pilot phase) 6 months	12 6 T: 6 C 58% F:42%M 13-16 years	Virtually	Intervention: Internet Coping Skills Training Program (TEENCOPE) Description: Behavioral intervention- TEENCOPE is an intervention Web site consisting of managing diabetes sessions, which include four weekly sessions on glucose control, nutrition, exercise, sick days, and new technology, and five weekly sessions on self-talk, communication skills, social issue skills, stress management, and conflict resolution. Consisted consisting of five weekly sessions on self-talk, communication skills, social problem skills, stress management, and conflict resolution and managing diabetes sessions which are four weekly sessions on glucose Control, nutrition, exercise, sick days, and new technology Mode: group with parents Personnel: nurses, clinical psychologists, and web- development team (web programmers and designers). Duration: 5 weeks Delivery method: web-based sessions	No significant reduction in hba1c values between both groups after 6 months of intervention (8% T:7.4% C)	Positive trends in psychosocial outcomes (stress, self-efficacy, and coping), and QOL (acceptability) (p=0.07-0.2)
21	Mulvaney SA <i>et al.</i> [36] 2012 USA	Pilot trial 3 months	46 23T:23C 43.5%F:56.5%M 13 - 17 years	Virtually	Intervention: tailored diabetes message system for mobile and the web Tailored mobile and web-based diabetes messaging system Description: Behavioral intervention- Adolescents were motivated and reminded about diabetes self-care duties via the text messaging system text messaging system was designed to motivate and remind adolescents about diabetes self-care tasks,, they received 10 texts per week, according Aaccording to their individual ly-reported barriers to diabetes self-care, they received 10 text messages per week. Mode: individuals Personnel: experts in diabetes adherence and clinical care Duration: 3 months Delivery methodmethod: online-based	No change in the mean hba1c level in the intervention group (8.8%), while the mean level in the control group was significantly higher (9.9%), $(p = 0.006)$	None

22	R. Whittemore <i>et al.</i> [37] 2012 USA	Multisided-randomized control trial 6 months	320 167 T: 153 C 55% F:45%M 11 - 14 years	Pediatric diabetes clinics	Intervention: Internet coping skills training (TEENCOPE) intervention Vs Mvs. Managing Diabetes (MD) program Description: Behavioral intervention- comparing TEENCOPE: includes five weekly sessions on conflict resolution, assertive communication, stress reduction, and social skill development includes five weekly sessions on social skills training, cognitive behavior modification, assertive communication, stress reduction, and conflict resolution. VS MD: Internet diabetes educational program, comprised five sessions, each of which featured case studies and problem-solving activities. Consisted consisting of five sessions included case studies and problem-solving exercises Mode: group Personnel: nurses, psychologists, and phd Ph.D. Candidates Duration: 5 weeks Delivery method: face-to-face and web-based sessions	erences in 0.144)	No significant differences in psychosocial outcomes (QOL, stress, depression, and coping, family conflict)
23	M. Grey <i>et al.</i> [38] 2013 USA	Randomized cross-over control trial 18 months	320 167 T: 153 C 55% F: 45% M 11 - 14 years	Virtually	Intervention: Internet Psycho-Education Programs Description: Behavioral intervention- Comparative efficacy of TEENCOPE This incorporates self-talk, interpersonal communication, social problem-solving skills, stress management, and conflict with managing diabetes which includes self- talk, communication skills, social problem skills, stress management, and conflict, with managing diabetes and Managing Diabetes which focus on decision making for optimal outcomes, both Both programs had 30 minutes-once a week/ five sessions. Mode: group with parents Personnel: trained research personnel Duration: 5 weeks Delivery method: web-based sessions	No sig. Difference between the two groups (p = 0.05) - Mean hbalc levels increased slightly in both groups by a mean of 0.12%	Both improved QOL (p= 0.001), with no significant difference between the two groups.
24	G. R. Husted <i>et al.</i> [39] 2014 Denmark	Randomized controlled trial 12 months	71 37 T: 34 C 62%F:38% M 13 - 18 years	Pediatrics out-patient's clinic	 Intervention: gguided self-determination youth (GSD-y) intervention Description: Behavioral intervention- life skills training process, facilitates patient-provider empowerment and consists of eight 1-hour sessions with 29 reflection sheetsfacilitates empowerment in the patient-provider relationship, involved involves eight-1-hr sessions consisting of 29 reflection sheets, for adolescents and parents in six steps: Establishing a mutual relationship with distinct "I-you" borders, self-exploration, self-understanding, shared decision-making, action, and feedback (1) establishing a mutual relationship with clear 'I-you' borders, (2) self-exploration, (3) self-understanding, (4) shared decision- making, (5) action, and (6) feedback. Mode: group with parents Personnel: pediatric diabetes nurses, pediatric physicians, dieticians Duration: 8 to 12 months Delivery method: face-to-face 	No significant reduction in HBA1c values (p=0.65)	No significant differences were observed in glycemic complications (hypoglycemia, hospitalization) and insulin doses/regimens; well-being and competency -Improved autonomy, self-regulation, and parental support
25	M. A. Harris <i>et al.</i> [40] 2015 USA	Randomized control trial 7 months	90 46 T: 44 C 55% M:45%F 12 - 19 years	Tertiary diabetes clinic	Intervention: Family Systems Therapy -Diabetes (BFST-D) via face- to-face OR Internet video conferencing (Skype) Description: The behavioural intervention (BFST-D) had four main parts: 1) problem-solving training, 2) communication training, 3) cognitive restructuring (dispelling strong beliefs), and 4) family therapy approaches, delivered either in-person or virtually. Sessions included modelling, giving directions and feedback, and guiding practise of skills via behavioural assignments. Mode: group with caregiver Personnel: research assistants, psychologists Duration: 12 weeks Delivery method: face-to-face and Skype video call	Significant reduction in hba1c (p= 0.01)	Statistically significant improvements in adherence maintained to 3-months follow- up
26	R. Fiallo Scharer <i>et al.</i> [41] 2019 USA	Randomized control trial 24 months	214 106 T: 108 C Both Genders (Not specified) 8-16 years	Diabetes clinics	Intervention: A family-centered approach Description: Behavioral intervention- 1) identify the barriers to family self-management. With a validated survey- Problem Recognition in Illness Self-Management (PRISM) tool 2) tailored self-management resources from the healthcare system for identifying barriers, and 3) alternatives to current behaviours are taken into consideration (social, emotional, or financial) as four group sessions were coordenated with diabetes visits Mode: Individuals with families Personnel: Trained nurses Duration: 9 months Delivery method: face-to-face	Significant reduction in hbalc by -0.08 (p<0.05), Large Decline for patients with hbalc >10 (-0.19) (n<0.05).	Increased mean QOL during intervention for Parents (p<0.05)

27	A. C. Sarteau <i>et al.</i> [42] 2020 USA	Randomized control trial 18 months	127 ND 45.9%F: 54.1% M 13 - 16 years	Children's Hospital/Medical Centre and virtually	Intervention: The Flexible Lifestyle Empowering Change trial (FLEX) Description: Behavioral intervention- combine both strategies (motivational interviewing (MI) & problem-solving skills training (PSST), four 40-to-60-minute introductory coaching sessions - One month apart, there was a (1) evaluation of what worried young people about their T1DM. (2) interacting with youngsters; (3) assigning behavioural homework. Each session where youth goal setting integrated BGM, CGM, and insulin dosing concluded by integrating the parent into the discussion on how they support the objectives identified by the youth. Mode: group with parents Personnel: dietician, nurse, certified diabetes educator (CDE) Duration: 7 months Delivery method: face-to-face followed by phone call/text message	Significant reduction in hbalc by 0.4% P= 0.03)	No statistically significant difference on days with clinical hypoglycemia
28	E. Bakır <i>et al.</i> [43] 2021 Turkey	RCT 6 months	50 25 T: 25 C 50%F:50%M 14+/-2 years	Home visits and virtually	Intervention: Information-motivation-behavioral skills model Description: Behavioral intervention- Consist of a number of phone calls and home visits including information on diet and exercise, motivation applying a good attitude in practicing the information, support, and health alarm, behavioral skills, and behavioral changes for achieving daily goals. Mode: group Personnel: nurses Duration: about 2 months Delivery method: face-to-face and phone call	Significant reduction in hba1c levels (p<0.001) And sixth months (p<0.001)	Improved knowledge levels (p<0.001), Personal motivation levels ($p = 0.001$), Social motivation levels ($p = 0.004$) And Behavioral skills (p<0.001) Of the study group.
29	M. L. Lawson <i>et al.</i> [44] 2000 Canada	Retrospective cohort study 15 months	28 17T: 11C Both genders (unspecified) 11 - 20 years	Outpatient / /hospital	Intervention: Intensive Diabetes Management (IDM) with intensive follow-up Description: The individualized programeach family received 6 to 8 hours of education, during which time the patients reviewed their meal plan and learned how to adjust their insulin dosage, with incentives when the hbalc target was reached. Compared to group education with routine follow-up, 6-8 hours of education per family, during which the patients reviewed their meal plan, and received insulin dose adjustment algorithm. With incentives when the hbalc target was met, versus group education with standard follow-up (2-hour ssessions). Mode: group with families Personnel: nurses, dieticians, diabetologists, and research fellow Duration: 6 to -8 hours of education over 3 to -4 sessions (not specified) Delivery method: face-to-face and phone-call follow-up	Significant reduction by mean -2.5% in T (p<0.0001) Vs -0.9% in C (p=0.05) after 3 months the The mean hbalc one year later remained significantly lower than at initiation of IDM in the T group (p=0.001) and was not significantly different than that prior to initiation of IDM in the C group (p=0.8).	2 patients of in the T group, had severe hypoglycemic reactions, while no reported cases from the C group.

38	B. Kassai <i>et al.</i> [53] 2015 France	Parallel-group randomized controlled trial 12 months	77 39 T: 38 C 36% F: 41% M 12 - 17 years	Multi-center	Intervention: Pediatrician and nurses counseling Description Either the intervention group (three-monthly doctor visits plus a monthly nurse visit and biweekly phone calls) or the control group (three-monthly doctor visits) The content of the intervention included general information about diabetes, how to manage it, and how to minimize diabetes-related complications. Mode: group Personnel: pediatricians and nurses Duration: One year Delivery method: face-to-face and phone calls	No significant reduction -0.04% (T) (p=0.61) Versus -0.033% (C) (p=0.54)	No significant differences for diabetes-related adverse effects (except ketoacidosis) which was more frequently in the intervention group compared to the control group
39	S. M. Ng [54] 2015 UK	Cohort study (pre-/ post- test) 5 years	The number and gender of participants were not specified; Age 12-25 years	ly	Intervention: Technology and social media intervention Description: Three digital technology techniques 1) Facebook social media platform for interactive communications that provided diabetic support and education. 2) Twinkle.Net integrated paediatric diabetes electronic management system (which permit monthly audits and more intensive contacts with low controls patients, and 3) Diasend® blood glucose and insulin pump downloading system, which enables quick access to and joint analysis of patients' blood glucose data in a clinic and enables the team to individualize treatment regimens. Mode: group with families Personnel: pediatric diabetes team Duration: 1 years Delivery method: social media technology	Significant reduction in hba1c (p<0.05)	Reduced length of stay and hospital admissions - Over 81% felt that the download technology for glucose metres and insulin pumps had benefited them, and 87% believed the technology had improved clinic patient management decisions.
40	M. Joubert <i>et al.</i> [55] 2016 France	Prospective multicenter-pilot study (pre-/post- test) 6 months	47 58% F: 42% M 11 - 18 years	Virtually	Intervention: Serious Videogame Designed for Flexible Insulin Therapy Description: In "L'Affaire Birman" the player will start solving diabetes-related - problems (hypoglycemia or hyperglycemia) and adapts insulin dose injection. No additional education was provided to the participants during their participation beyond that which was based on their blood glucose level, degree of physical activity, and carbohydrate intake. Mode: group with families Personnel: physicians, nurses, dieticians, and expert diabetic patients (academic diabetes care team) Duration: about 3 months Delivery Method: web-based game sessions	No significant reduction in hba1c but remained stable throughout the study	Improvement in knowledge without changes in therapeutic behavior Significant improvement in insulin titration and carbohydrate (CHO) quantification
41	R. O. La Banca <i>et al.</i> [56] 2021 Brazil	Pilot randomized trial 8 - 12 months	20 10 T: 10 C 60% F: 40% M 7 - 12 years	Diabetes clinics	Intervention: Therapeutic play intervention (ITP) Description: Following a video of children in the intervention group injecting a doll with insulin, a narrative about a T1DM child who self-injects insulin at school was read to the children. Children then videotaped injecting the doll once more, while the control group received standard clinic-based education. Mode: group with families Personnel: trained nurses with the research team Duration: 1 month Delivery method: face-to-face	No significant reduction -mean HBA1c was 8.8+/-1.2% T:9.3+/-2.6% C; (p=0.6)	Statistically with significant improvement in injection technique scores 90% of participants reported extreme QOL satisfaction
42	K. Dłużniak-Gołaska <i>et al.</i> [57] 2019 Poland	Randomized control trial 6 months	196 98 T: 98 C Both genders (not specified) 8 - 17 years	Hospital - Diabetology Clinic and virtually	Intervention: Interactive Nutrition Education Description: All participants had poorly controlled type 1 diabetes that was managed with insulin pumps, and they were randomly assigned to one of two groups (E) that also used interactive methods (quiz + multimedia application) or the control group (C), which only used informative methods (lecture). Educational materials about carbohydrate counting, blood glucose response to food, and healthy eating. Mode: group with parent Personnel: trained dietician Duration: 3 months Delivery method: face-to-face sessions followed by interactive mobile apps.	Significant reduction in hbalc in Group E By -0.47%, (P<0.01) -The positive effect Was no longer present after 6 months.	Non-significant improvement in clinical outcomes at 6 months follow-up in both groups. -Obesity % increased more in group C than E. -Significant difference was noted in knowledge scoring for "blood glucose response to food"

43	E. Döğer <i>et al.</i> [58] 2019 Turkey	Cohort study (pre-/post- test) 6 months	82 53% F: 47.6% M 10.89±4 years	Virtually	Intervention: Telehealth System Description: Patients/parents who called daily, 5–6 times per week, 1-2 times per week, or once every 15 days were classified as frequent callers, while those who called less frequently were classified as infrequent callers. Counselling was conducted via communication networks to discuss the current treatment plan and ask diabetes-related questions (about insulin dose and blood glucose regulation, carbohydrate counting, and appropriate actions to be taken in the case of hyperglycemia and hypoglycemia). Mode: Group with families Personnel: diabetes team (nurses, dieticians, psychologists, and physicians) Duration: 3 months Delivery method: Internet and smartphones	Significant reduction in hba1c (p<0.001)	None
44	S. S. Jaser <i>et al.</i> [59] 2020 USA	Randomized controlled trial 6 months	120 60 T: 60 C 52.5% F:47.5% M 13 - 17 years	Virtually	Intervention: Positive psychology intervention Description: Every two weeks, educational materials were mailed to the control group (EDU). Included details like adherence, hba1c, and hypoglycemia. And the intervention group Positive Affect (PA) group, who received reminders (gratitude, self-affirmation, parental affirmation, and modest presents) in addition to the same materials as the EDU group. Mode: group with caregivers Personnel: trained research assistants Duration: 2 months (8 weeks) Delivery method: text message or phone call	No significant difference post 3 months (p=0.86), no sig difference after 6 months (p=0.557)	PA intervention significantly improved QOL
45	JE Alfonsi <i>et al.</i> [60] 2020 Canada	Randomized control trial 3 months	46 23 T: 23 C Both Genders (not specified) 8 - 17 years	Virtually	Intervention: Carbohydrate Counting App Using Image Recognition Description: The ispy app, a cutting-edge mobile application that allows food identification through images and is designed to help young people with T1DM count carbohydrates, was provided on participants' mobile devices, and they were asked to complete tasks using it. Mode: group Personnel: registered dieticians and educators Duration: 3 months Delivery Method: mobile app	Significant reduction in hba1c Levels (p=0.03)	CHO counting ability/accuracy improved p=0.008, with reduced frequency of counting errors - Positive QOL scores (acceptability and engagement)
46	M. Otis <i>et al.</i> [61] 2020 USA	Mixed-phase pilot study 5 months	42 22 phase 1: 20 phase 2 64%F:36% M 5 - 14 years	Virtually	Intervention: Mobile Educator Tool/program Description: The Mobile Diabetes Educator (MDE) comprises of eight animated, interactive modules with a preadolescent with T1DM who is of uncertain ethnicity. The aetiology of diabetes, controlling blood sugar levels, and suggested diet and exercise regimens are all covered. A tablet with information on diet, glucose tests, glucose responses, and insulin was given to parent-child couples. Mode: Group with parents Personnel: Children's educational media consultants Duration: one hour Delivery method: interactive electronic book (mobile)	No significant difference in hba1c (p=0.71)	-No significant changes were observed for the diabetes knowledge, attitudes, and behavioral measures. -No significant changes in diabetes self-management, self-efficacy, and parental communication
47	R. Whittemore <i>et al.</i> [62] 2020 USA	Randomized control trial 6 months	162 81 T: 81 C 98% F: 2% M 11 - 16 years	Virtually	Intervention: ehealth program Description Participants were randomly assigned to the wait-list control group or the Type 1 Teamwork website. They were given access to the ehealth programme via email, along with instructions on how to access, and were given information on the challenges of adolescence, creating a positive partnership between parents and adolescents, communicating positively with adolescents, gradually assigning them more responsibility, understanding the emotions that parents experience, and the significance of taking care of oneself. Type 1 Teamwork included six interactive sections. Mode: group of parents of adolescents Personnel: pediatric diabetes endocrinologists Duration: 6 months Delivery Method: web-based sessions	No significant reduction in hba1c but remained stable throughout the study (p=0.089)	Significantly lower parenting stress (better coping while spending more time in the program)

48	V. Pais <i>et al.</i> [63] 2021 Canada	Kandomized, controlled, parallel- group trial 4 months	50 24 T: 26 C 54%F:46%M 12 - 18 years	The Hospital for Sick Children (sickkids) and virtually	Intervention: Counting Carbs to Be in Charge Description: Compared the efficiency of teaching carbohydrate counting principles. Started by evaluation of participants' knowledge, followed by either an online session or an in-person session led by a dietician and post- intervention evaluation. Mode: group Personnel: dieticians Duration: about 1 month Delivery method: face-to-face and online	Significant reduction in hbalc after 3 months by 1% in both C & T groups (p=0.01)	Improved frequency of CHO Calculation, increasing CHO counting efficiency and knowledge in both methods (no sig. Difference)
49	H. J. Tong <i>et al.</i> [64] 2021 China	Quasi-experimental prospective study 9 months	102 52 T: 50C 56.9%F:43.1%M <14 years	Hospital of China Medical University and virtually	Intervention: Hospital discharge education plan Description: In the hospital, a multidisciplinary team provided diabetes education, skill training, psychological intervention, telephone follow-up, and Wechat intervention. Thematic education for youngsters and their families focused on problem-solving and coping skills, self- management skills, and decision-making abilities. Mode: group with families Personnel: nurse, nutritionist, endocrinologist, pharmacist, and psychologist Duration: 4 months Delivery method: face-to-face and phone call follow-up	Significant reduction in hbalc post- intervention (p=0.012)	Discharge readiness and education scores were higher in the intervention group than control group.

RESULTS AND DISCUSSION Studies Characteristics

The 49 studies included in this review were published between 2000 and 2021. The research setting spans 18 different countries, with most articles (33/49) published after 2011. Furthermore, 12 (24%) studies utilized qualitative designs, while 37 (76%) adopted the mixed-method design. Six quantitative studies were randomized controlled trials (RCT), and four had observational analytical designs (casecontrol/ cohort studies). Moreover, 36 out of 49 (73.5%) articles compared the outcomes between the participants in the educational interventions and the control group that adhered to their original course of treatment and care. Other research compared the outcomes of different patient education interventions or pre- and post-test studies.

A significant variation was detected in the types of patient education intervention, design, and outcome measures between studies. The studies were classified into three categories based on the duration of the educational intervention, where 24 (49%) studies lasted ≤ 3 months, 15 (30.6%) studies were conducted between three to six months, and 10 (20.4%) education interventions lasted for six to 12 months. Furthermore, 28 out of 49 (57%) studies showed that hba1c levels were substantially decreased over time. Meanwhile, 16 studies that reported a significant decrease in hba1c recorded the measurements between three to six months post-intervention, while only three were measured in ≥ 1 year of intervention.

Sample Population Characteristics

A total of 5874 patients were comprised in this scoping review (**Table 1**), with an age range of 10.3 to 17.3 years. Nonetheless, several studies [31, 32, 38, 39, 49, 53, 59, 63] had a target population consisting of children, adolescents,

and young adults between 18 and 25 years old, having type T1DM for at least a year. In addition, 42 out of the 49 studies (85.7%) had an average of 44% male and 56% female participants.

Intervention Characteristics

The patient education interventions vary between studies (objectives, participants, locality, and delivery methods) and are detailed in the supplementary information (**Table 1**). The interventions were conducted physically or virtually, focusing on the patients' (children and adolescents) and caregivers' (patients' families) coping skills and knowledge provided to improve T1DM management, patients' health, and daily life. A total of 17 (34.7%) interventions were held face-to-face, 17 (34.7%) were conducted virtually (via mobile phones, video conferencing, or web-based), and 15 (30.6%) combined both techniques. In addition, 26 (53.1%) interventions were conducted in person at hospitals (clinics or centers), while five (10.2%) were in summer camps.

Among the 46 group-based interventions, 33 (67.3%) included family or support persons, while the other 13 (26.5%) did not. On the other hand, three interventions were conducted individually with patients. Furthermore, 42 (85.7%) interventions were led by health care providers and seven interventions involved researchers and trained research assistants as the main facilitators. Multidisciplinary teams directed another 22 (44.9%) interventions.

Seven (14.3%) interventions were designed as session-based, structured education programs, five (10.2%) were campbased interventions with training and activities, five (10.2%)involved behavioral and coping skills training, and four (8.2%) were peer-education that consisted of problem sharing and discussion. The remaining interventions were motivational interviews, game-based and therapeutic play interventions, psychological interventions, dietary interventions with carb calculation training, and an intensive diabetes education program involving frequent blood glycemia monitoring, self-management, and a hospital discharge education plan. Most education interventions included educational materials on T1DM pathophysiology, carbohydrate counting, insulin dose adjustment, diabetic complications management, and sick-day rules.

Study Outcomes

The hba1c level is the primary outcome of this study. Most interventions or 48 (98%) studies reported reduced hba1c levels post-intervention, among which 28 (58%) were statistically significant. Other outcomes include learning, behavioral, psychological, QOL, and health status. Notably, 16 interventions evaluated diabetes-related knowledge as learning outcomes, of which 12 studies (75%) demonstrated improvements and were statistically significant. A total of 23 studies (46.9%) assessed behavioral outcomes, such as dietary practice, self-care, self-management, problem-solving, blood glycemia monitoring, and adherence to insulin, where 22 reported enhancements in at least one of the measured parameters.

Another 10 studies reported improvements in psychological and socio-psychological outcomes, including self-esteem, self-efficacy, coping with T1DM, discharge readiness, motivation, reduced stress, and treatment satisfaction. Meanwhile, 16 out of 49 studies exhibited better QOL, of which five were statistically significant. Improved health status outcomes were indicated by decreased diabetes-related complications (hypo/hyperglycemia) and hospital admissions, which were recorded in eight studies.

Education is a vital process in diabetes management that allows for patient-specific care, improving treatment adherence and prevent-diabetes related complications, thus, leading to optimized management [65]. Lorig and Holman [9] stated that education enables patients to understand their illnesses, hone relevant skills and knowledge to manage challenges, customize treatments, and maintain a good QOL. This study provided the necessary information for the scientific debate about the efficacy of various interventions to improve the welfare of diabetic children and adolescents.

Generally, most educational interventions effectively improved glycemia control and reflected a reduction in hba1c. This finding suggested that education intervention effectively controls T1DM in children and adolescents. Nevertheless, most studies did not explore the key factors, such as the sustainability of glycemia control, despite the level of sustained glycemic control in young patients with type 1 diabetes being the leading cause of chronich and acute complications [66].

It is highly recommended for an educational intervention to be patient-specific, depending on their age, culture, diabetes stage, lifestyle, and maturity to suit the individual needs [67]. For example, more than 15000 participants whose data were retrieved from the T1DM Exchange registry across the United States of America (USA) demonstrated that hba1c levels skyrocketed between ages 13 and 25 and did not stabilize until after 30 [68]. Furthermore, hba1c in this age range has worsened since 2010, charting the highest average of 9.2% among 19-year-old patients [68]. These findings indicated the urgency of optimizing glycemic levels specifically in younger populations.

In the search for the best education intervention, a trend toward significant glycemic improvements were observed in 13 out of 22 (59.1%) studies associated with multidisciplinary interventions by teams of doctors, nurses, dietitian, and psychologists. The collaboration between health care providers with different expertise demonstrated a synergistic effect in managing children and adolescents with T1DM, resulting in significant outcomes and better glycemic control. Wigert *et al.* [69] explained three significant outcomes of an effective multidisciplinary team when caring for children and adolescents with T1DM: 1) building a long-term relationship, 2) integrating knowledge through multidisciplinary teamwork, and 3) ensuring adequate documentation.

Effective communication between patients and health care providers is essential in building a long-term relationship based on trust, shared responsibilities, and ethical considerations. Furthermore, the multidisciplinary team must be able to communicate effectively with one another in disseminating knowledge required by the patients, besides ensuring adequate documentation crucial for patient followups and in maintaining the functioning and stability within the team [69]. Moreover, Likitmaskul *et al.* [20] emphasized the importance of a multidisciplinary team for an effective education program and for helping diabetic children and their families manage their glycemia, arising problems, and longterm self-care.

Most interventions that reported significant improvements in glycemia control measured the glycated hemoglobin between three- and six-months post-intervention. In contrast, few interventions with significant improvements measured the patients' hba1c levels regularly for more than a year. These findings suggested that most effective interventions lack sustainable glycemia control. Regular consultations and follow-ups with T1DM patients for more than a year postintervention resulted in long-term improvements in hba1c and reduced incidence of severe hypoglycemia [70]. Additionally, post-intervention feedback was reported in several reviewed studies. The participants found the interventions beneficial, reporting better health status reflected fewer diabetes-related complications by (hypoglycemia, hyperglycemia, hospital admissions, and length of stay in hospital) [38, 54, 55, 58, 61, 62]. Intervention evaluation and participants' feedback are vital in evaluating and modifying intervention content, design, and delivery and are valuable for patient targeting [71].

The QOL is a multidimensional concept that measures patients' well-being, and physical, psychological, and social functioning [72]. This concept was selected as an outcome of several education interventions (n = 16) with positive results, where five were statistically significant. Meanwhile, the peers-based intervention studies demonstrated that sharing knowledge, experiences, and management strategies in dealing with T1DM-related challenges allowed the young patients to learn from each other besides promoting awareness about their illness [73].

CONCLUSION

In conclusion, the study findings demonstrated that the outcomes from education interventions were related to intervention duration. Therefore, it is essential to integrate education intervention programs into all diabetic management settings instead of limited duration or teaching at the beginning of the patient's follow-up. In addition, it is recommended that a well-structured multidisciplinary education intervention program should be divided into two phases: 1) comprehensive education intervention phase in which the participants (children or adolescents and their families) are exposed to the general knowledge and management strategies of T1DM, and 2) individualized, patient-centered phase, in which each patient subjective characteristics are considered, and the educational materials are tailored to their individual needs. Both phases are predicted to contribute to effective, sustainable, and potentially cost-effective improvements in glycemia control.

ACKNOWLEDGMENTS: None CONFLICT OF INTEREST: None FINANCIAL SUPPORT: None ETHICS STATEMENT: None

REFERENCES

- Patterson CC, Karuranga S, Salpea P, Saeedi P, Dahlquist G, Soltesz G, et al. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107842.
- Lin CH, Chang CH, Chuang LM. Commentary on risk factors for first and subsequent cardiovascular disease events in type 1 diabetes: The diabetes control and complications trial/epidemiology of diabetes interventions and complications study. J Diabetes Investig. 2021;12(3):313-6.
- Hood KK, Peterson CM, Rohan JM, Drotar D. Association between adherence and glycemic control in pediatric type 1 diabetes: A metaanalysis. Pediatrics. 2009;124(6):e1171-9.
- Kyokunzire C, Matovu N. Factors associated with adherence to diabetes care recommendations among children and adolescents with type 1 diabetes: A facility-based study in two urban diabetes clinics in Uganda. Diabetes Metab Syndr Obes. 2018;11:93-104.
- Silverstein J, Klingensmith G, Copeland K, Plotnick L, Kaufman F, Laffel L, et al. Care of children and adolescents with type 1 diabetes: A statement of the American Diabetes Association. Diabetes Care. 2005;28(1):186-212.
- Liu B, Huang F, Wu X, Xie Y, Xu R, Huang J, et al. Poor guideline adherence in type 1 diabetes education in real-world clinical practice: Evidence from a multicentre, national survey. Patient Educ Couns. 2021;104(11):2740-7.

- 7. Patient Engagement: Technical Series on Safer Primary Care. World Health Organization; 2016.
- Graffigna G, Barello S. Spotlight on the patient health engagement model (PHE model): A psychosocial theory to understand people's meaningful engagement in their own health care. Patient Prefer Adherence. 2018;12:1261-71.
- Lorig KR, Holman HR. Self-management education: History, definition, outcomes, and mechanisms. Ann Behav Med. 2003;26(1):1-7.
- Campbell F, Biggs K, Aldiss SK, O'Neill PM, Clowes M, McDonagh J, et al. Transition of care for adolescents from paediatric services to adult health services. Cochrane Database Syst Rev. 2016;4:CD009794.
- 11. Steinsbekk A, Rygg LO, Lisulo M, Rise MB, Fretheim A. Group based diabetes self-management education compared to routine treatment for people with type 2 diabetes mellitus. A systematic review with meta-analysis. BMC Health Serv Res. 2012;12:213.
- 12. Stenberg U, Haaland-Overby M, Fredriksen K, Westermann KF, Kvisvik T. A scoping review of the literature on benefits and challenges of participating in patient education programs aimed at promoting self-management for people living with chronic illness. Patient Educ Couns. 2016;99(11):1759-71.
- Kristiansen TM, Antoft R. Patient education as a status passage in life

 An ethnographic study exploring participation in a Danish groupbased patient education programme. Soc Sci Med. 2016;158:34-42.
- 14. Arksey H, O'Malley L. Scoping studies: Towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19-32.
- 15. Mays N, Pope C, Popay J. Systematically reviewing qualitative and quantitative evidence to inform management and policy-making in the health field. J Health Serv Res Policy. 2005;10(Suppl 1):6-20.
- Afshar M, Memarian R, Mohammadi E. The effect of group discussion on the quality of life and HbA1c levels of adolescents with diabetes. Iran Red Crescent Med J. 2014;16(8):e21110. doi:10.5812/ircmj.21110
- Altundag S, Bayat M. Peer interaction and group education for adaptation to disease in adolescents with Type 1 diabetes mellitus. Pak J Med Sci. 2016;32(4):1010-4. doi:10.12669/pjms.324.9809
- Edraki M, Zarei A, Soltanian M, Moravej H. The effect of peer education on self-care behaviors and the mean of glycosylated hemoglobin in adolescents with Type 1 diabetes: A randomized controlled clinical trial. Int J Community Based Nurs Midwifery. 2020;8(3):209-19. doi:10.30476/ijcbnm.2020.82296.1051
- Walker AF, Haller MJ, Gurka MJ, Morris HL, Bruggeman B, Miller K, et al. Addressing health disparities in type 1 diabetes through peer mentorship. Pediatr Diabetes. 2020;21(1):120-7. doi:10.1111/pedi.12935
- Likitmaskul S, Wekawanich J, Wongarn R, Chaichanwatanakul K, Kiattisakthavee P, Nimkarn S, et al. Intensive diabetes education program and multidisciplinary team approach in management of newly diagnosed type 1 diabetes mellitus: a greater patient benefit, experience at Siriraj Hospital. J Med Assoc Thail. 2002;85(Suppl 2):S488-95.
- Wang YC, Stewart SM, Mackenzie M, Nakonezny PA, Edwards D, White PC. A randomized controlled trial comparing motivational interviewing in education to structured diabetes education in teens with type 1 diabetes. Diabetes Care. 2010;33(8):1741-3. doi:10.2337/dc10-0019
- 22. Abolfotouh MA, Kamal MM, El-Bourgy MD, Mohamed SG. Quality of life and glycemic control in adolescents with type 1 diabetes and the impact of an education intervention. Int J Gen Med. 2011;4:141-52. doi:10.2147/IJGM.S16951
- 23. Coates V, Chaney D, Bunting B, Shorter GW, Shevlin M, McDougall A, et al. Evaluation of the effectiveness of a structured diabetes education programme (CHOICE) on clinical outcomes for adolescents with type 1 diabetes: A Randomised controlled trial. J Diabetes Metab. 2013;4(6):1000280. doi:10.4172/2155-6156.1000280
- Christie D, Thompson R, Sawtell M, Allen E, Cairns J, Smith F, et al. Structured, intensive education maximising engagement, motivation and long-term change for children and young people with diabetes: A cluster randomised controlled trial with integral process and economic evaluation - the CASCADE study. Health Technol Assess. 2014;18(20):1-202. doi:10.3310/hta18200

- Hawkes CP, Willi SM, Murphy KM. A structured 1-year education program for children with newly diagnosed type 1 diabetes improves early glycemic control. Pediatr Diabetes. 2019;20(4):460-7. doi:10.1111/pedi.12849
- Ramírez-Mendoza F, González JE, Gasca E, Camacho M, Cruz MV, Caraveo D, et al. Time in range and HbA1C after 6 months with a multidisciplinary program for children and adolescents with diabetes mellitus, real world data from Mexico City. Pediatr Diabetes. 2020;21(1):61-8. doi:10.1111/pedi.12921
- 27. D'Souza RS, Ryan M, Hawkes E, Baker C, Davies Y, Judith R, et al. Questionnaire-based service evaluation of the efficacy and usefulness of SEREN: A structured education programme for children and young people diagnosed with type 1 diabetes mellitus. BMJ Open Qual. 2021;10(3):e001337. doi:10.1136/bmjoq-2021-001337
- Karagüzel G, Bircan I, Erişir S, Bundak R. Metabolic control and educational status in children with type 1 diabetes: effects of a summer camp and intensive insulin treatment. Acta Diabetol. 2005;42(4):156-61. doi:10.1007/s00592-005-0196-9
- Santiprabhob J, Likitmaskul S, Sriwijitkamol A, Peerapatdit T, Sawathiparnich P, Nitiyanant W, et al. Improved glycemic control among Thai children and young adults with type 1 diabetes participating in the diabetes camp. J Med Assoc Thai. 2005;88(Suppl 8):S38-S43.
- 30. Santiprabhob J, Likitmaskul S, Kiattisakthavee P, Weerakulwattana P, Chaichanwattanakul K, Nakavachara P, et al. Glycemic control and the psychosocial benefits gained by patients with type 1 diabetes mellitus attending the diabetes camp. Patient Educ Couns. 2008;73(1):60-6. doi:10.1016/j.pec.2008.05.023
- Wang YC, Stewart S, Tuli E, White P. Improved glycemic control in adolescents with type 1 diabetes mellitus who attend diabetes camp. Pediatr Diabetes. 2008;9(1):29-34. doi:10.1111/j.1399-5448.2007. 00285.x
- Troncone A, Chianese A, Cascella C, Zanfardino A, Iafusco D. Psychological outcomes in children and early adolescents with type 1 diabetes following pediatric diabetes summer camp: A 3-month follow-up study. Front Pediatr. 2021;9:650201. doi:10.3389/fped.2021.650201
- Cook S, Herold K, Edidin DV, Briars R. Increasing problem solving in adolescents with type 1 diabetes: The choices diabetes program. Diabetes Educ. 2002;28(1):115-24. doi:10.1177/014572170202800113
- Lehmkuhl HD, Storch EA, Cammarata C, Meyer K, Rahman O, Silverstein J, et al. Telehealth behavior therapy for the management of type 1 diabetes in adolescents. J Diabetes Sci Technol. 2010;4(1):199-208. doi:10.1177/193229681000400125
- Whittemore R, Grey M, Lindemann E, Ambrosino J, Jaser S. Development of an Internet coping skills training program for teenagers with type 1 diabetes. Comput Inform Nurs. 2010;28(2):103-11. doi:10.1097/NCN.0b013e3181cd8199
- Mulvaney SA, Anders S, Smith AK, Pittel EJ, Johnson KB. A pilot test of a tailored mobile and web-based diabetes messaging system for adolescents. J Telemed Telecare. 2012;18(2):115-8.
- Whittemore R, Jaser SS, Jeon S, Liberti L, Delamater A, Murphy K, et al. An internet coping skills training program for youth with type 1 diabetes: Six-month outcomes. Nurs Res. 2012;61(6):395-404. doi:10.1097/NNR.0b013e3182690a29
- Grey M, Whittemore R, Jeon S, Murphy K, Faulkner MS, Delamater A, et al. Internet psycho-education programs improve outcomes in youth with type 1 diabetes. Diabetes Care. 2013;36(9):2475-82. doi:10.2337/dc12-2199
- 39. Husted GR, Thorsteinsson B, Esbensen BA, Gluud C, Winkel P, Hommel E, et al. Effect of guided self-determination youth intervention integrated into outpatient visits versus treatment as usual on glycemic control and life skills: A randomized clinical trial in adolescents with type 1 diabetes. Trials. 2014;15(1):321. doi:10.1186/1745-6215-15-321
- Harris MA, Freeman KA, Duke DC. Seeing is believing: Using Skype to improve diabetes outcomes in youth. Diabetes Care. 2015;38(8):1427-34.
- Fiallo-Scharer R, Palta M, Chewning BA, Rajamanickam V, Wysocki T, Wetterneck TB, et al. Impact of family-centered tailoring of

pediatric diabetes self-management resources. Pediatr Diabetes. 2019;20(7):1016-24. doi:10.1111/pedi.12899

- 42. Cristello Sarteau A, Crandell J, Seid M, Kichler JC, Maahs DM, Wang J, et al. Characterization of youth goal setting in the self-management of type 1 diabetes and associations with HbA1c: The flexible lifestyle empowering change trial. Pediatr Diabetes. 2020;21(7):1343-52. doi:10.1111/pedi.13099
- Bakır E, Çavuşoğlu H, Mengen E. Effects of the informationmotivation-behavioral skills model on metabolic control of adolescents with type 1 diabetes in Turkey: Randomized controlled study. J Pediatr Nurs. 2021;58:e19-e27. doi:10.1016/j.pedn.2020.11.019
- 44. Lawson ML, Frank MR, Fry MK, Perlman K, Sochett EB, Daneman D. Intensive diabetes management in adolescents with type 1 diabetes: The importance of intensive follow-up. J Pediatr Endocrinol Metab. 2000;13(1):79-84. doi:10.1515/jpem.2000.13.1.79
- 45. Kumar VS, Wentzell KJ, Mikkelsen T, Pentland A, Laffel LM. The DAILY (Daily Automated Intensive Log for Youth) trial: A wireless, portable system to improve adherence and glycemic control in youth with diabetes. Diabetes Technol Ther. 2004;6(4):445-53.
- 46. von Sengbusch S, Müller-Godeffroy E, Häger S, Reintjes R, Hiort O, Wagner V. Mobile diabetes education and care: intervention for children and young people with Type 1 diabetes in rural areas of northern Germany. Diabet Med. 2006;23(2):122-7. doi:10.1111/j.1464-5491.2005. 01754.x
- Channon SJ, Huws-Thomas MV, Rollnick S, Hood K, Cannings-John RL, Rogers C, et al. A multicenter randomized controlled trial of motivational interviewing in teenagers with diabetes. Diabetes Care. 2007;30(6):1390-5. doi:10.2337/dc06-2260
- 48. Iafusco D, Galderisi A, Nocerino I, Cocca A, Zuccotti G, Prisco F, et al. Chat line for adolescents with type 1 diabetes: a useful tool to improve coping with diabetes: A 2-year follow-up study. Diabetes Technol Ther. 2011;13(5):551-5. doi:10.1089/dia.2010.0188
- Pinsker JE, Nguyen C, Young S, Fredericks GJ, Chan D. A pilot project for improving paediatric diabetes outcomes using a website: The Pediatric Diabetes Education Portal. J Telemed Telecare. 2011;17(5):226-30.
- Frøisland DH, Arsand E, Skårderud F. Improving diabetes care for young people with type 1 diabetes through visual learning on mobile phones: mixed-methods study. J Med Internet Res. 2012;14(4):e111.
- Peña NV, Torres M, Cardona JA, Iniesta R. Impact of telemedicine assessment on glycemic variability in children with type 1 diabetes mellitus. Diabetes Technol Ther. 2013;15(2):136-42. doi:10.1089/dia.2012.0243
- Bin-Abbas B, Jabbari M, Al-Fares A, El-Dali A, Al-Orifi F. Effect of mobile phone short text messages on glycaemic control in children with type 1 diabetes. J Telemed Telecare. 2014;20(3):153-6. doi:10.1177/1357633X14529244
- 53. Kassai B, Rabilloud M, Bernoux D, Michal C, Riche B, Ginhoux T, et al. Management of adolescents with very poorly controlled type 1 diabetes by nurses: a parallel group randomized controlled trial. Trials. 2015;16:399. doi:10.1186/s13063-015-0923-7
- Ng SM. Improving patient outcomes with technology and social media in paediatric diabetes. BMJ Qual Improv Rep. 2015;4(1):u209396.w3846. doi:10.1136/bmjquality.u209396.w3846
- 55. Joubert M, Armand C, Morera J, Tokayeva L, Guillaume A, Reznik Y. Impact of a serious videogame designed for flexible insulin therapy on the knowledge and behaviors of children with type 1 diabetes: The LUDIDIAB pilot study. Diabetes Technol Ther. 2016;18(2):52-8.
- La Banca RO, Laffel LMB, Volkening LK, Sparapani VC, de Carvalho EC, Nascimento LC. Therapeutic play to teach children with type 1 diabetes insulin self-injection: A pilot trial in a developing country. J Spec Pediatr Nurs. 2021;26(1):e12309. doi:10.1111/jspn.12309
- 57. Dłużniak-Gołaska K, Panczyk M, Szypowska A, Sińska B, Szostak-Węgierek D. Interactive nutrition education is more effective in terms of improved levels of glycated hemoglobin in adolescent patients with poorly controlled type 1 diabetes A randomized study. Diabetes Metab Syndr Obes. 2019;12:2619-31. doi:10.2147/DMSO.S229246
- 58. Döğer E, Bozbulut R, Acar AŞ, Ercan Ş, Uğurlu AK, Akbaş ED, et al. Effect of telehealth system on glycemic control in children and

adolescents with type 1 diabetes. J Clin Res Pediatr Endocrinol. 2019;11(1):70-5. doi:10.4274/jcrpe.galenos.2018.2018.0017

- Jaser SS, Datye K, Morrow T, Sinisterra M, LeStourgeon L, Abadula F, et al. THR1VE! Positive psychology intervention to treat diabetes distress in teens with type 1 diabetes: Rationale and trial design. Contemp Clin Trials. 2020;96:106086. doi:10.1016/j.cct.2020.106086
- Alfonsi JE, Choi EE, Arshad T, Sammott SA, Pais V, Nguyen C, et al. Carbohydrate Counting app using image recognition for youth with type 1 diabetes: Pilot randomized control trial. JMIR Mhealth Uhealth. 2020;8(10):e22074.
- Otis M, Zhu J, Mustafa-Kutana SN, Bernier AV, Shum JM, Dupre AA, et al. Testing usability and feasibility of a mobile educator tool for pediatric diabetes self-management: Mixed methods pilot study. JMIR Form Res. 2020;4(5):e16262.
- 62. Whittemore R, Coleman J, Delvy R, Zincavage R, Ambrosoli JA, Shi L, et al. An eHealth program for parents of adolescents with T1DM improves parenting stress: A randomized control trial. Diabetes Educ. 2020;46(1):62-72.
- Pais V, Patel BP, Ghayoori S, Hamilton JK. "Counting carbs to be in charge": A comparison of an internet-based education module with inclass education in adolescents with type 1 diabetes. Clin Diabetes. 2021;39(1):80-7. doi:10.2337/cd20-0060
- Tong HJ, Qiu F, Fan L. Effect of hospital discharge plan for children with type 1 diabetes on discharge readiness, discharge education quality, and blood glucose control. World J Clin Cases. 2021;9(4):774-83. doi:10.12998/wjcc. v9.i4.774
- Swiatoniowska N, Sarzynska K, Szymanska-Chabowska A, Jankowska-Polanska B. The role of education in type 2 diabetes treatment. Diabetes Res Clin Pract. 2019;151:237-46. doi:10.1016/j.diabres.2019.04.004
- Nordwall M, Arnqvist HJ, Bojestig M, Ludvigsson J. Good glycemic control remains crucial in prevention of late diabetic complications-

the Linköping Diabetes Complications Study. Pediatr Diabetes. 2009;10(3):168-76.

- 67. Marshall SL, Edidin DV, Arena VC, Becker DJ, Bunker CH, Gishoma C, et al. Glucose control in Rwandan youth with type 1 diabetes following establishment of systematic, HbA1c based, care and education. Diabetes Res Clin Pract. 2015;107(1):113-22.
- Miller KM, Foster NC, Beck RW, Bergenstal RM, DuBose SN, DiMeglio LA, et al. Current state of type 1 diabetes treatment in the U.S.: Updated data from the T1D Exchange clinic registry. Diabetes Care. 2015;38(6):971e8.
- Wigert H, Wikström E. Organizing person-centred care in paediatric diabetes: Multidisciplinary teams, long-term relationships and adequate documentation. BMC Res Notes. 2014;7(1):1-8. doi:10.1186/1756-0500-7-72
- Plank J, Köhler G, Rakovac I, Semlitsch BM, Horvath K, Bock G, et al. Long-term evaluation of a structured outpatient education programme for intensified insulin therapy in patients with type 1 diabetes: A 12-year follow-up. Diabetologia. 2004;47(8):1370-5.
- Monaghan M, Sanders RE, Kelly KP, Cogen FR, Streisand R. Using qualitative methods to guide clinical trial design: Parent recommendations for intervention modification in Type 1 diabetes. J Fam Psychol. 2011;25(6):868-72.
- Hilliard ME, Minard CG, Marrero DG, de Wit M, Thompson D, DuBose SN, et al. Assessing health-related quality of life in children and adolescents with diabetes: Development and psychometrics of the type 1 diabetes and life (T1DAL) measures. J Pediatr Psychol. 2020;45(3):328-39.
- Kazemi S, Parvizy S, Atlasi R, Baradaran HR. Evaluating the effectiveness of peer-based intervention in managing type I diabetes mellitus among children and adolescents: A systematic review. Med J Islam Repub Iran. 2016;30:442.