

DP-012

FUNCTIONAL CHARACTERIZATION OF RAT PLASMA MEMBRANE MONOAMINE TRANSPORTER (PMAT) IN THE BLOOD-BRAIN AND BLOOD-CEREBROSPINAL FLUID BARRIERS

<u>Takashi Okura</u>¹, Sayaka Kato¹, Riyo Morimoto², Satoru Yui², Atsushi Yamashita³, Tetsuya Terasaki⁴ and Yoshiharu Deguchi¹

¹Department of Drug Disposition & Pharmacokinetics, ²Department of Medical Life Chemistry, ³Department of Biological Chemistry, School of Pharmaceutical Sciences, Teikyo University, Sagamihara 252-5195, Japan, ⁴Department of Biochemical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan

E-mail: okura@pharm.teikyo-u.ac.jp

ABSTRACT

This study investigated the expression and functional roles of rat plasma membrane monoamine transporter (rPMAT) in the blood-brain barrier (BBB) and bloodcerebrospinal fluid barrier (BCSFB) by using in vitro brain barrier model cells (TR-BBB13 and TR-CSFB3 cells) and multiple in vivo experimental techniques.¹⁾ Ouantitative RT-PCR analysis showed relatively high expression of rPMAT mRNA in TR-BBB13 and TR-CSFB3 cells. 1-Methyl-4-phenylpyridinium (MPP+) was transported into rPMAT-expressing cells in a sodium-independent manner. [³H]MPP⁺ was taken up concentration-dependently by TR-BBB13 and TR-CSFB3 cells with $K_{\rm m}$ values similar to that of rPMAT-expressing cells. [3H]MPP+ transports into these cells were markedly inhibited by serotonin, dopamine and cationic drugs. rPMAT siRNA significantly suppressed [³H]MPP⁺ uptake by TR-BBB13 cells. Intracerebrally injected [³H]MPP⁺ was eliminated from the brain parenchymal region, whereas brain [³H]MPP⁺ uptake did not increase with time during *in situ* brain perfusion, suggesting that the brain-to-blood transport across the BBB predominates over blood-to-brain transport. Brain microdialysis studies revealed that the elimination across the BBB was significantly decreased by co-perfusion of unlabelled MPP⁺, serotonin or dopamine. [³H]MPP⁺ was also eliminated from the CSF. These findings suggest that PMAT in brain barriers functions as the brain-to-blood transporter to regulate brain concentrations of organic cations, including monoamines and cationic neurotoxins.

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.