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Abstract 
 

In this paper, the differential transformation is applied to approximate and exact solutions of nonlinear integro-differential and differential 

equations with proportional delays. In this technique, the nonlinear term is replaced by its Adomian polynomials for k index, so the dependent 

variable components in the recurrence relation are replaced by their corresponding differential transform components of the same index. 

Therefore, the nonlinear integro-differential equation can be easily solved with less computational works for any analytical nonlinearity due 

to the available algorithms and properties of the Adomian polynomials. In illustrative examples, the present method is applied to a few types 

of nonlinearity are treated and the proposed technique has provided good results. 
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INTRODUCTION 

Integro-differential and integral equations have found 

applications in engineering, biomedical engineering, physics, 

chemistry and biological [1-3]. Functional-differential 

equations with proportional delays have particularly 

described some models including polymer crystallization and 

motion of particles in liquid that can be found in [4]. There 

are many ways to approach for solutions of integral and 

integro-differential equations. For example, the linear and 

non-linear integro-differential equations have been solved by 

the Legendre wavelets method [5], the Haar functions method 

[6, 7], the Adomian decomposition method [8, 9], the Taylor 

polynomial method [10-12] and the linearization method 

[13]. In this paper, we consider the following integro-

differential and nonlinear differential equations with 

proportional delays: 

ℱ (t, y(p0t), y′(p1t), ⋯ , y(n)(pnt)) = 0     t ≥ 0,                         (1) 

 G(t, y(p0t), y′(p1t), ⋯, y(n)(pnt), ∫ Krt0 (t, s, y(q0s), y′(q1s), ⋯ , y(m)(qms)ds) = 0, t ≥ 0 (2)  

where ℱ, G, K are given functions with appropriate domains 

of definition, pi, qj, r ∈ (0,1), i = 0,1,2 ⋯, n, j = 0,1, ⋯, m, m < n. We introduce a more efficient and comprehensive 

way to use the differential transform method (DTM) for 

solving integro-differential and nonlinear differential 

equations; the idea is based on the methodology in [14]. The 

nonlinear function is replaced by its Adomian polynomials 

and then the dependent variables are replaced by their 

corresponding differential transform component of the same 

index. This technique benefited from the properties of the 

efficient algorithm and Adomian polynomials to quickly 

generate them as in the work [15-17]. 

NOTATIONS AND PRELIMINARIES  

A review of the differential transformation method is 

presented here. 

Differential transformation method 
In the study of electric circuits, Zhou introduced the 

differential transformation method in 1987 [18]. The methods 
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based on yields of differential transformation and Taylor 

series are difference equations that solutions give the exact 

values of derivatives of origin function at a given point. 

The main advantage of differential transformation from 

Fourier and Laplace transformations is that it can be easily 

applied to linear equations with some nonlinear equations and 

variable and constant coefficients. 

The differential transformation of the kth derivative of 

function y(t) is defined as follows: 

                     Y(k) = 1k! [dky(t)dtk ]t=t0,                       (3) 

where Y(k) is the transformed function and y(t) is the 

original function. Differential inverse transformation of Y(k) 

is defined as follows: 

                    y(t) = ∑ Y∞k=0 (k)(t − t0)k.                     (4) 

Inverse transformation (4.2) implies that the concept of 

differential transformation is derived from the Taylor series 

expansion. Although DTM is not able to symbolically assess 

the derivatives, relative derivatives can be calculated in an 

iterative manner that is described by the transformed 

equations of the original function. 

From definitions (3), (4) we can derive the following. 

Theorem 2.1. Assume that Ψ(k), G(k), H(k) and Yi(k), i =1, ⋯, n, are the differential transformations of the functions ψ(t), g(t), h(t) and yi(t), i = 1, ⋯, n, respectively, then: Ifψ(t) = dng(t)dtn , then Ψ(k) = (k+n)!k! G(k + n). 

If ψ(t) = g(t)h(t), then Ψ(k) = ∑ Gkl=0 (l)H(k − l). 

If ψ(t) = tn, then Ψ(k) = δ(k − n), δ is the Kronecker delta 

symbol. 

Ifψ(t) = eλt, then Ψ(k) = λkk! . 
If ψ(t) = g(t) ∫ ht0 (s)ds, then Ψ(k) = G(k−1)k , where k ≥ 1. 
If ψ(t) = ∏ yini=1 (t), then Ψ(k) =∑ ∑ ⋯k−r1r2=0kr1=0 ∑ Y1k−rl−⋯rn−1rn=0 (r1) ⋯ Yn−1(rn−1)Yn(k −r1 − ⋯ − rn). 

The proof of Theorem 2.1 is given in [19]. 

 

Theorem 2.2. Assume that Φ(k), Y(k) and Yi(k) are the 

differential transformations of the functions ϕ(t), y(t) and yi(t), respectively, and q, qi ∈ (0,1), i = 1,2. Then: 

(i) If ϕ(t) = y(qt), then Φ(k) = qkY(k). 

(ii) If ϕ(t) = y1(q1t)y2(q2t), then Φ(k) =∑ q1lkl=0 q2k−lY1(l)Y2(k − l). 

 (iii) If ϕ(t) = dmdtm y(qt), then Φ(k) = (k+m)!k! qk+mY(k + m). 

(iv) If ϕ(t) = dndtn y1(q1t) dmdtm y2(q2t), then 

Φ(k) = ∑ q1l+nkl=0 q2k−l+m (l+n)!(k−l+m)!l!(k−l)! Y1(l + n)Y2(k − l +m). 

The proof of Theorem 2.2 is given in [20]. 

Theorem 2.3. Assume that Ω(k), Y(k) and Yi(k) are the 

differential transformations of the function ω(t), y(t) and yi(t), respectively, and r, q, qi ∈ (0,1), i = 1,2. Then: 

(I) If ω(t) = ∫ yrt0 (qs)ds, then Ω(k) = 1k rkqk−1Y(k − 1) 

(II) Ifω(t) = ∫ y1rt0 (q1s)y2(q2s)ds, then Ω(k) =1k ∑ rkk−1l=0 q1l q2k−l−1Y1(l)Y2(k − l − 1) 

(III) If ω(t) = y(qt) ∫ y1rt0 (q1s)y2(q2s)ds, then Ω(k) = ∑  k−1l=0 ∑  k−l−1s=0 1k−l rk−lqlq1s q2k−l−s−1Y(l)Y1(s)Y2(k −l − s − 1), 

where k ∈ ℕ. The proof of Theorem 2.3 is given in [20]. 

DESCRIPTION OF THE METHOD 

In this section, an efficient and reliable algorithm is 

introduced to calculate the differential transform of the 

nonlinear function ω(u). This nonlinear function can be 

decomposed as 

                 ω(u) = ∑ An∞n=0                                  (5) 

where An, n ≥ 0 are the Adomian polynomials determined 

formally as follows [8, 21]. 

              An = 1n! [ dndλn [ω(∑ λi∞i=0 ui)‖λ=0,               (6) 

The Adomian polynomials of ω(u) are introduced as A0 = ω(u0), A1 = u1ω(1)(u0), 
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A2 = u2ω(1)(u0) + 12! u12ω(2)(u0), 

A3 = u3ω(1)(u0)) + u1u2ω(2)(u0) + 13! u13ω(3)(u0),                       

(7) A4 = u4ω(1)(u0) + (u1u3 + 12! u22)ω(2)(u0) +12! u12u2ω(3)(u0) + 14! u14ω(4)(u); 
A5 = u5ω(1)(u0) + (u2u3 + u1u4)ω(2)(u0) + 12! (u12u3+ u1u22)ω(3)(u0) + 13! u13u2ω(4)(u0) 

+ 15! u15ω(5)(u0), 

etc. Hence, the differential transform components of ω(u) are 

computed by utilizing their properties, they can be written in 

the following form (for x = 0) Ω(0) = ω(U(0)), Ω(1) = U(1)ω(1)(U(0)), Ω(2) = U(2)ω(1)(U(0)) + 12! U2(1)ω(2)(U(0)), Ω(3) = U(3)ω(1)(U(0)) + U(1)U(2)ω(2)(U(0)) +13! U3(1)ω(3)(U(0)), Ω(4) = U(4)ω(1)(U(0)) + (U(1)U(3)+ 12! U2(2))ω(2)(U(0)) 

+ 12! U2(1)U(2)ω(3)(U(0)) + 14! U4(1)ω(4)(U(0)), Ω(5) = U(5)ω(1)(U(0)) + (U(2)U(3) +U(1)U(4))ω(2)(U(0)) + 12! (U2(1)U(3) +U(1)U2(2))ω(3)(U(0) + 13! U3(1)U(2)ω(4)ω(U(0)) +15! U5(1)ω(5)(U(0)), (8) 

and so on. The advantage of using this algorithm in 

comparison to the algorithm proposed in [22] for computation 

of differential transformation of a nonlinear function is that 

the algorithm directly deals with the nonlinear function of the 

problem in hand in its form with no differentiation, algebraic 

manipulation and no need to compute the differential 

transform other functions to obtain the required one. 

APPLICATIONS AND NUMERICAL RESULTS 

In this section, the proposed method is implemented on 

different examples with different nonlinearity types. 

 

Example 4.1. Consider the following delay differential 

equation of the third order: y′′′(t) = −1 + 2y2(t2), y(O) = 0, y′(O) = 1, y′′(0) = 0.                           

(9) 

Substituting t = 0 into equation (9), we have y′′′(0) = −10. 

Using the differential transformation method, the differential 

transform version of equation (9), we get (k + 3)(k + 2)(k + 1)Y(k + 3) = −δ(k) + 2 × 12k Ω(k)                       

(10) 

where Ω(k) are the differential transform (Adomian 

polynomials) of the nonlinear ω(y) = y2(t), and Y(O) = 0, Y(1) = 1, Y(2) = 0. Using the relation in (8), the Adomian 

polynomials for this nonlinear function are Ω(0) = ω(Y(0)) = 0, Y(3) = − 13!, Ω(1) = Y(1)ω(1)(Y(0)) = 0, Y(4) = 0, Ω(2) = Y(2)ω(1)(Y(0)) + 12! Y2(1)ω(2)(Y(0)) = 1, Y(5) =15!, Ω(3) = Y(3)ω(1)(Y(0)) + Y(1)Y(2)ω(2)(Y(0)) +13! Y3(1)ω(3)(Y(0)) = 0, Y(6) = 0, 
Ω(4) = Y(4)ω(1)(Y(0)) + (Y(1)Y(3) +12! Y2(2)) ω(2)(Y(0)) + 12! Y2(1)Y(2)ω(3)(Y(0)) +14! Y4(1)ω(4)(Y(0)) = − 13 ,       Y(7) = − 17!       (11) 

Using the recurrence relation (10) and the Adomian 

polynomials (11), Y(k) are evaluated. Hence, using inverse 

transformation in equation (4.2), the following series solution 

can be obtained 

y(t) = t − 13! t3 + 15! t5 − 17! t7 + ⋯ + (−1)n(2n + 1)! t2n+1+ ⋯ ⋯ 

The closed form of the above series solution is y(t) =  sin t 
which is the exact solution of equation (9). 

Example 4.2. Consider the nonlinear pantograph‐type 

integro-differential equation of the first order 

               y′(t) + (12 t − 2)y(t) − 2 ∫ y2t0 (s2)ds = 1,                    

(12) 
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with initial condition y(O) = 0. Substituting t = 0 in 

equation (12), we get y′(O) = 1. Applying the differential 

transformation method to equation (12), we get (k + 1)Y(k + 1) + ∑ (kl=0 12 δ(l − 1) − 2δ(l))Y(k − 1) −12k−2 Ω(k − 1) = δ(k).           (13) 

where Ω(k) are the differential transform (Adomian 

polynomials) of the nonlinear ω(y) = y2(t), and Y(O) = 0, Y(1) = 1. 
Using the relations in (8) the Adomian polynomials for this 

nonlinear function are Ω(0) = ω(Y(0)) = 0, Y(2) = 1, Ω(1) = Y(1)ω(1)(Y(0)) = 0, Y(3) = 12!, Ω(2) = Y(2)ω(1)(Y(0)) + 12! Y2(1)ω(2)(Y(0)) = 1, Y(4) =13!, Ω(3) = Y(3)ω(1)(Y(0)) + Y(1)Y(2)ω(2)(Y(0)) +13! Y3(1)ω(3)(Y(0)) = 2, Y(5) = 14!,     (14) 

Using the recurrence relation (13) and the Adomian 

polynomials (14), Y(k) are evaluated. Hence using inverse 

transformation in the equation, the following series solution 

can be obtained y(t) = t + t2 + 12! t3 + 13! t4 + 14! t5 + ⋯ +1k! tk+1 + ⋯. 
The closed form of the above series solution is y(t) = tet, 
which is the exact solution of equation (12). 

Example 4.3. Consider the following nonhomogeneous first‐
order integro-differential equation with proportional delay: 

y′(t) − y(t2) − 12 y(t2) ∫ yt30 (s)y(s2)ds = 4 − 2t − 881 t4,               

(15) y(O) = 0. Substituting t = 0 in equation (15), we obtain the 

second conditions y′(O) = 4. Applying the differential 

transformation method to equation (15), we get 

(y + 1)Y(k + 1) − 12k Y(k)
− 12 ∑ ∑ 1k − lk−l−1

s=0
k−1
l=0 (13)k−l(12)lY(l)Ω(s) = 

 4δ(k) − 2δ(k − 1) − 881 δ(k − 4)                               (16) 

 

where Ω(s) are the differential transform (Adomian 

polynomials) of the nonlinear ω(y) = y(t)y (t2), and Y(O) =0, Y(1) = 4. Using the relations in (8), the Adomian 

polynomials for this nonlinear function are Ω(0) = ω(Y(0)) = 0, Ω(1) = Y(1)ω(1)(Y(0)) = 0, Y(2) = 0, Ω(2) = Y(2)ω(1)(Y(0)) + 12! Y2(1)ω(2)(Y(0)) = 128, Y(3) = 0, Ω(3) = Y(3)ω(1)(Y(0)) + Y(1)Y(2)ω(2)(Y(0)) +13! Y(1)ω(3)(Y(0)) = 0, Y(4) = 0, (17) 

Similarly, we obtain Y(k) = 0, k ≥ 2, Ω(m) = 0, m ≥ 3. 

Using the Adomian polynomials (17) and the recurrence 

relation (16), Y(k) is assessed. So, the series solution of y(t) = 4t can be obtained using inverse transformation in 

equation (4.2). 

CONCLUSION 

In this study, we showed that the differential transformation 

method can be utilized successfully for solving nonlinear 

integro-differential and differential equations with 

proportional delays. In this paper, we presented a new 

approach for applying the differential transform method for 

solving nonlinear differential and integro-differential 

equations with proportional delays. In the recurrence relation, 

the differential transform of the nonlinear term is replaced by 

its Adomian polynomial of index k. Therefore, the dependent 

variable components are replaced by their corresponding 

differential transforms of the same index k. The major 

advantage of this method is that it can be directly applied to 

functional integro-differential and differential equations with 

no require to perturbation, discretization, or linearization. In 

addition, this method is able to remarkably reduce the size of 

computational work. 

REFERENCES  
1. Kythe P, Puri P. Computational methods for linear integral equations. 

Univer‐ sity of New Orleans, New Orleans 1992. 

2. Wazwaz AM. A comparison study between the modified 

decomposition method and the traditional methods for solving 

nonlinear integral equations. Applied Mathematics and Computation. 

2006 Oct 15;181(2):1703-12. 

3. Rashed MT. Numerical solution of functional differential, integral 

and integro-differential equations. Applied Mathematics and 

Computation. 2004 Sep 6;156(2):485-92. 

4. Çelik E, Karaduman E, Bayram M. Numerical solutions of chemical 

differential-algebraic equations. Applied mathematics and 

computation. 2003 Jul 15;139(2-3):259-64. 

5. Yousefi S, Razzaghi M. Legendre wavelets method for the nonlinear 

Volterra–Fredholm integral equations. Mathematics and computers in 

simulation. 2005 Sep 1;70(1):1-8. 

6. Maleknejad K, Mirzaee F. Numerical solution of integro‐differential 

equations by using rationalized Haar functions method. Kybernetes. 

2006 Dec 1. 



Khanlari and Paripour: Nonlinear Differential and Integro-Differential Equations with Proportional Delays by Differential Transform Method with Adomian 

Polynomials 

 

  

 Archives of Pharmacy Practice ¦ Volume 11 ¦ Issue S1 ¦ January-March 20201                                                                                                     71 
 

7. Reihani MH, Abadi Z. Rationalized Haar functions method for 

solving Fredholm and Volterra integral equations. Journal of 

Computational and Applied Mathematics. 2007 Mar 1;200(1):12-20. 

8. Wazwaz AM. The combined Laplace transform–Adomian 

decomposition method for handling nonlinear Volterra integro–
differential equations. Applied Mathematics and Computation. 2010 

Apr 15;216(4):1304-9. 

9. Araghi MF, Behzadi SS. Solving Nonlinear Volterra Fredholm 

Integro-differential Equations Using the Modified Adomian 

Decomposition Method. Computational Methods in Applied 

Mathematics. 2009 Jan 1;9(4):321-31. 

10. Darania P, Ivaz K. Numerical solution of nonlinear Volterra–
Fredholm integro-differential equations. Computers & Mathematics 

with Applications. 2008 Nov 1;56(9):2197-209. 

11. Maleknejad K, Mahmoudi Y. Taylor polynomial solution of high-

order nonlinear Volterra–Fredholm integro-differential equations. 

Applied Mathematics and Computation. 2003 Dec 25;145(2-3):641-

53. 

12. Yalçinbaş S. Taylor polynomial solutions of nonlinear Volterra–
Fredholm integral equations. Applied Mathematics and Computation. 

2002 Apr 15;127(2-3):195-206. 

13. Darania P, Ebadian A, Oskoi AV. Linearization method for solving 

nonlinear integral equations. Mathematical Problems in Engineering. 

2006;2006. 

14. Elsaid A. Fractional differential transform method combined with the 

Adomian polynomials. Applied Mathematics and Computation. 2012 

Feb 15;218(12):6899-911. 

15. Duan JS. Convenient analytic recurrence algorithms for the Adomian 

polynomials. Applied Mathematics and Computation. 2011 Mar 

1;217(13):6337-48. 

16. Duan JS. Recurrence triangle for Adomian polynomials. Applied 

Mathematics and Computation. 2010 Apr 15;216(4):1235-41. 

17. Duan JS. An efficient algorithm for the multivariable Adomian 

polynomials. Applied Mathematics and Computation. 2010 Nov 

15;217(6):2456-67. 

18. Zhou JK. Differential Transformation and its applications for 

electrical circuits, Huazhong univ. Press, wuhan, China. 1986. 

19. Jang MJ, Chen CL, Liy YC. On solving the initial-value problems 

using the differential transformation method. Applied Mathematics 

and Computation. 2000 Oct 27;115(2-3):145-60. 

20. Smarda, Z., Diblik, J., Khan, T. Extantion of the differential 

transformation method to nonlinear differetial and integro-differential 

equations with propotional delays, Advances in Difference Equations. 

2013; 69: 1‐12. 

21. Adomian, G. Solving frontier problems of physics: The 

decomposition method, Kluwer Academic Publishers, MA, 1994. 

22. Chang SH, Chang IL. A new algorithm for calculating one-

dimensional differential transform of nonlinear functions. Applied 

mathematics and computation. 2008 Feb 1;195(2):799-808. 

 

 

 


