Saber Amjadian ¹, Ata Mohammadi ^{2*}, Behzad Parvizi ²

¹ Ph.D. student in Accounting, Sanandaj Branch, Islamic Azad University of Sanandaj, Iran.² Assistant professor in Accounting, Accounting group, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran,

Abstract

The current research sought to present a model for evaluating the financial performance of companies active in Tehran stock exchange. T this end, 50 financial ratios proposed by experts were utilized, among which, 49 ratios were finalized. These ratios were categorized into 6 groups including consolidation, economic, leverage, liquidity, profitability and activity. According to the experts' views, these ratios were weighted and analyzed using multivariate decision making criteria of BWM and Aras technique as well as Lingo software. Finally, the companies were ranked; among the existing 516 companies whose ratios were accessible, the investigations were conducted. The results indicated that Iran mineral salts company, Golgohar mining and industrial company and Khouzestan steel company obtained 1 to 3 rankings, respectively.

Keywords: Performance evaluation, Financial ratios, The best worst method, Tehran stock exchange

INTRODUCTION

In fact, if it is not possible to measure what is being spoken of, and if it is not possible to express the intended meaning in terms of numbers, it seems that nothing has been understood regarding the issue; since in this sense, the comprehended knowledge becomes only a narrow and superficial knowledge. This may be an introduction to the knowledge that have not reached to the level of science. Performance evaluation refers to the sum of actions and information that occur to increase the optimal use level of facilities and resources to achieve the intended purposes, especially economic ones, along with efficacy and Regarding organizational dimension, effectiveness. performance evaluation refers to the extent of activities` effectiveness. Effectiveness means the amount of having access to the purposes and programs having the characteristics of efficiency in activities and performances. Overall, the performance evaluation system can be viewed as a measurement process as well as the comparison between the amount and the way of achieving an appropriate status ^[1]. It seems that performance evaluation system was firstly and officially presented in individual and organizational level in a textile industry by Robert Aven in Scotland during 1800; regarding which, the produced goods were ranked using woods in various colors, which was a kind of evaluation regarding the quality or headquarters of the organization. This method was also utilized for identifying the reasons of having changes and their controlling in the production and finally improving the products or presenting services. Edward Deming has emphasized on the fact that all business processes should be a part of evaluation system along with the feedback cycle. Jac Fitz Enz believed that evaluating every business activity is an essential issue. Evaluation should take place on both common processes and individual performances. In case the design of a project is intended, or only daily management activities are considered, there would be no knowledge on what to do without taking numbers into account. Without having a measurement system, managers would only play the role of a supervisor. In traditional views, the most important aim of evaluation was judgment and evaluation of

Address for correspondence: Ata Mohammadi, Assistant professor in Accounting, Accounting group, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran. Email: Ataata.mm68@yahoo.com

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work noncommercially, as long as the author is credited and the new creations are licensed under the identical terms.

How to cite this article: Amjadian, S., Mohammadi, A., Parvizi, B. Identification and Ranking performance Indicators Using ISM and BWM Methods in Companies Listed in Tehran Stock Exchange. Arch Pharma Pract 2020;11(S1):140-55.

the intended performance. However, in the modern views, the philosophy of evaluation has focused on the growth, development and improvement of the capacity of assessors ^[2].

Management quality is basically dependent on the quality of decision making, since the quality of designs and programs, the effectiveness and efficiency of strategies and the quality of results obtained through their use, all are dependent on the quality of decisions that management makes. In most of the cases, the decisions are appropriate and satisfactory to the decision maker in case the decisions are based on some investigated criteria. Regarding multivariate decision making methods, which have been considered by the researcher in recent decades, instead of using an optimal measuring criterion, multi-criteria measurements are utilized. One of these criteria that has been designed by an Iranian scientist of Netherlands Industrial University, is BWM method, which has some advantages over other multicriteria methods. In this study, firstly, the criteria were integrated using ISM and later, the outcomes of ISM were put as BWM model's input, so that a model was finally designed to evaluate the companies` performance. Having succeeded in this evaluation, it could be used for predicting future performances.

Background of the Study

One of the main duties of financial managers is controlling financial resources and being confident to obtain the predetermined results. The results of accountants` endeavor is presenting reports that indicate the financial status of the institute as well as their performance results during a period. In case these reports not be properly analyzed, they may not provide the readers with beneficial data and may be delusive, instead. Various measurement tools could be used for evaluating one trading unit's health; among which, the analysis of horizontal and vertical financial statements and the investigation of ratios can be pointed out. The analysis of financial statements is an endeavor to evaluate the strength and weakness points of institution's financial statuses through investigating the reported numbers. On the other hand, perfect business models is a response to the question that how is a superior organization? what goals and concepts does it follow? and what are the criteria governing its behaviors?. Nowadays, most of the counties in the world have used some models as the stimulants of the organization and business to elevate, develop and make wealth. In this section, firstly, a brief explanation of the previous researches has been presented and the measured financial performance of the companies have been introduced.

Theoretical Foundations

Unfortunately, nowadays, the desire of people toward investment in stock exchange is not high. One of the reasons regarding this issue is the inability of investors in predicting and evaluating and overall, analyzing the data and most importantly, the performance of the companies, as well as people's desires for investing in the banks and commercial issues. On the other hand, organizations need those decisions that provide an appropriate pattern for predicting and measuring the performance so that continuous improvement could be achieved in all fields. With the emergence of modern methods, and using such methods along with traditional financial criteria, the companies` performance evaluation changed. However, it is still possible to increase the accuracy of output data using accounting economic criteria and their integration with various methods as well as the use of new financial criteria. Using SIM approach to cope with the ambiguities existing in input data, along with BWM method, can present a specific applied research in terms of evaluating and predicting companies` financial performance. On the other hand, all models have investigated companies` performance through one or multi dimensions and have sought to provide a model for comprehensively evaluating companies` financial statuses. As it was mentioned, due to the various use of performance evaluation discussion in financial and management fields, the evaluation and investigation of its various aspects is a necessity for managers and investors as well as capital market activists. In this regard, the results of this research can be used in organizations such as investment companies, banks, credit institutions, investment provision companies, investment counselling centers and all capital market activists can benefit from it.

Research Purposes

A. Local Studies

Author	Years	Title
Noroush and Mashayekhi	2005	In all studied companies, regardless of the industry they belong, there was a significant relationship between changes in accounting income as well as changes in economic value-added.
Abzari et al.	2009	In companies of basic metals` group, there was no significant relationships between economic value-added and the two common indexes of accounting, namely, actual return of stock and the share of each profit.
Soukh Yekan et al.	2011	To select optimal portfolio, ELECTRE method can be utilized through companies` financial ratios and superior ones of each industry can be prioritized regarding their investment in the stock exchange.
Moradzadeh Fard et al.	2012	Investigating the efficiency of fuzzy hybrid approach, AHP and Tapsis models for evaluating the performance.
Mousazadeh Abbasi et al.	2012	Presenting a modern model in financial ranking and evaluating of companies

Fallah Shams and Atai	2012	The performance of 50 companies listed in the Tehran stock exchange is different using M3, SORTINO and ERVO criteria and none of the mentioned criteria showed the better performance of investigated companies in the market.
Mir Ghafouri et al.	2013	Using Gray Theory and considering identified indexes, Telecommunication company of Yazd province, East Azarbaijan and Qom had the most efficiency.
Farshid Karimi	2015	Predicting stock exchange indexes through ANN hybrid model as well as genetic algorithm, finally led to the designing of a model.
Abdolreza Karimi	2017	Identifying and ranking productivity index of working teams in the hospital using ANP-BWM approach, case of study: Sajjad Hospital of Tehran
Shohreh Zehkesh	2018	Designing a model using financial ratios for evaluating companies` performance

B. Foreign Studies

Yumura et al.	1996	The superiority of economic value-added to traditional accounting indexes
Qahraman et al.	2004	Ranking banks through using equal evaluation cards, Tapsis and FAHP.
Yong Huang	2007	Performance evaluation, as a multi attribute decision making issue, selects a way from among possible several ways.
Ertugrul and Gargash Oglu	2009	Using FAHP and Tapsis, a hybrid method for evaluating companies` performance could be presented.
Yalkin et al.	2012	Ranking companies listed in the stock exchange of Turkey using fuzzy approach, Tapsis and Vikor
Balzentis et al.	2012	Using multi attribute fuzzy decision making techniques. They evaluated Lithuania economic parts based on financial ratios.
Lee et al.	2012	In a study, they compared the financial status of four carriage companies in Taiwan and Korea using some of the multi attribute decision making techniques.
Egnatius et al.	2012	Evaluating the financial performance of Iranian car factories listed in Tehran stock exchange using multi attribute decision making techniques

Bayraktaroglu and Yalkin	2013	They evaluated the financial strategic performance of 17 companies listed in Istanbul stock exchange and using FAHP method as well as VIKOR technique, they ranked the studied companies.
Park et al.	2014	Cost reducing strategies
Dighe A and Yucheng	2015	Using ANP method for evaluating the performance
Mangala et al.	2015	Using fuzzy approach and AHP for ranking the companies
Rezaie	2016	Using BWM for evaluating the companies
Gu and Zhao	2017	Developing BWM for evaluating the companies and adding fuzzy logic to that.

Overall Purpose

Presenting a model for evaluating and predicting the performance using financial criteria of ISM and BWM methods

Secondary Purposes

- **1.** Identifying the ability of ISM in recognizing performance evaluation criteria
- **2.** Identifying the amount of effect of various criteria on performance evaluation
- **3.** Identifying the best financial criteria affecting the performance
- **4.** Identifying the amount of ability of BWM model in evaluating and predicting the performance
- **5.** Comparison of various criteria for evaluating the performance

Research Questions

Main Question of the Study

Which model can be presented to evaluate and predict companies' performance using the integration of various financial criteria of ISM method?

Secondary Questions of the Study

- **1.** Do financial criteria of ISM method have the ability of predicting companies` performance?
- **2.** What are the most important financial criteria affecting companies` performance?
- **3.** What is the appropriate model for evaluating companies` performance?
- **4.** How much is the ability of each criteria in evaluating the performance?
- **5.** How much is the ability of BWM model in evaluating and predicting the performance?

Performance Evaluation Indices

Since long ago, the existing approaches toward performance criteria have led to various studies in order to achieve an appropriate criteria for evaluating the performance of companies and managers to be assured about their company's align movement with actual investors' earnings; this has been a basis for taking economic decisions by potential investors and creditors. The results of these studies have led to the presentation of five approaches related to the performance criteria as stated in the following:

Accounting Approach

In this approach, for evaluating the performance, use is made of included figures in the financial statements such as earnings, earnings per share, operating cash flow, return on assets and the return of shareholder's equity.

Economic Approach

Based on this approach, in which economic concepts are used, the trading center's performance is evaluated with an emphasis on the profitability of the company's assets and regarding the rate of return and used rate of capital cost. Economic value-added, refined economic value-added and the market's value-added are placed in this group.

Consolidation Approach

In this approach, an integration of accounting data and market is used for evaluating the performance; for example, Tobin s q ratio and P/E ratio ^[3].

Financial Management Approach (Risk Focused Approach)

According to this approach, mostly financial management theories such as CAPM as well as risk and return concepts are utilized. The main focus of this approach is on determining the excess return of each share.

Modern Approaches

Modern liquidity methods include comprehensive liquidity index and cash conversion cycle criteria.

In this research, considering previous researches, 50 ratios related to the experts` views have been extracted as stated in the following:

1. Cash Value-Added (CVA): Cash value-added is referred as the surplus cash, which is obtained after discounting the capital in cash costs from the operating income cash. This surplus cash is sometimes referred as the surplus cash earning ^[4].

Cash value-added= Operating income cash after discounting the taxes- capital in cash costs

Operating income cash after discounting the taxes= cash resulting from operational activities- the taxes of operating income cash after discounting the taxes

Capital in cash costs= the paid earning+ dividend payout ratio

2. Comprehensive Liquidity Index

This index solves the problem related to not considering the current assets` liquidity degree and the time of refunding current debts through calculating the weighted mean of the current ratio.

The details of this model are as the following:

Each current asset receives a certain weight regarding its liquidity degree and their adjusted amount is then calculated. The weight of each asset equals to:

The reversion of assets` turnover ratio

The cash receives the coefficient of one, due to the fact that it is cash in its essence, so it doesn't need any adjustments.

Since company's claims has a one phase distance to be cash, it is adjusted.

The stock in hand is adjusted since it should change to receivable accounts and then to cash.

The adjusted coefficient is calculated for each current debt whose adjusted amount is calculated, as well.

Comprehensive liquidity index is calculated as follows:

ACR= ACA / LCA

In which: ACR= Comprehensive Liquidity Index ACA= Adjusted Current Asses LCA= Adjusted Current Debts

3. Cash Conversion Cycle Index: Gitman (1974) defined the cash conversion cycle as the vital part of managing working capital. Cash conversion cycle is a net time between paying debts and receiving cash from the place of collecting debts. In case this period takes shorter, the company would have a better liquidity. The formula of calculating cash conversion index is as the following:

CCC = OC - PP OC = INVP + RP PP = PA / DCOGS In which: CCC = cash conversion cycle OC= operating cost RP= collecting debt period INVP= Keeping stock in hand period PA= remaining payable account DCGS= cost of goods sold (daily COGS/360)

 Net Cash Balance Index: This is a new index identified for determining company's liquidity position. In this index, cash balance as well as securities' exchange are considered to show the liquidity position of the company. It indicates the real liquidity reserve of the company in relation to unpredicted needs. Calculating net cash balance is done as the following:

NLB= (CASH+MKT-AP)/TA

In which: NLB: Net cash balance Cash: ready money MKT: marketable securities exchange AP= Payable notes TA= total of assets

5. Tubin's q: Tubin's q is among consolidation criteria which is based on accounting studies and market data. According to many researchers' beliefs, it is the best criteria for measuring the performance and company's capitalization. Tubin's q is calculated as THE following:

Tubin's q ratio= market capitalization / replacement value or the book value of the company's assets

6. Return on Assets` Rate (ROA): Return on assets` rate is defined as the ratio of net earnings for ordinary investors to the sum of measured assets. This ratio is one of the profitability ratios whose overall purpose is measuring the amount of institution`s ability or inability in using company`s financial resources. The specific purpose behind measuring asset return is actually measuring the overall profitability of the assets^[5].

ROA= net earnings of ordinary investors/ all assets

7. The Return Rate of Shareholders' Equity (ROE): The return rate of stakeholders' equity is calculated through dividing the net earnings belonging to the ordinary investors to the shareholders' equity.

ROE= net earnings of ordinary investors/ shareholders` equity

This ratio shows that how much earning is obtained during a year for each unit of shareholders` equity. In fact, ROE states the profitability ratio of a company.

8. P/E Ratio: This means the ratio of the price to the income of each earning indicating the ratio of time needed for the return of the principle of investment from coming income earnings.

P/E= market price of each share/ earnings per share

9. Earnings Per Share (EPS): One of the main factors of the superiority of a share is the amount of its profitability. Considering the fact that the number of distributed shares by the companies is different, the profitability amount of each share is calculated through the profit ratio of each share. Having calculated this

number, the earnings obtained by a company for an ordinary share in a specific period is identified.

EPS= (earnings after discounting the debts- the share of blue-chip stocks)/ distributed ordinary shares` number

10. Economic Value- Added (EVA): EVA was firstly used by Stern Stewart in 1980, and is one of the remaining profit indexes after discounting all costs such as debts costs and capital's costs. Stewart declared that in case operating profitability could be increased without adding any extra capitals, or if it be possible to invest on projects that have more overall earnings than capital costs, then EVA would be increased ^[3].

EVA is as the following: CAPITAL/R=NOPAT ×CAPITAL→R×CAPITAL−C×CAPITAL EVA=(R-C) R is the rate of capital`s return and C is the weighted average cost of capital (WACC). NOPAT= Net operating profit after tax at the end of t period

11. Refined Economic Value Added (REVA): In the above section as well as part 10, net book value of the assets was utilized for determining the used capital cost. In case daily value of the assets is utilized instead of net book value of the assets, the obtained amount would indicate refined economic value added ^[5].

REVA- $(\gamma - C) \times M$ capital t-1

M Capital shows the market value of company's assets

And C shows the capital cost, which is obtained through calculating the weighted arithmetic mean based on market values.

12. Market Value Added (MVA): Stwart has defined market's value added as the ratio of surplus value of the capital market to its book value.

MVA= company`s market value – working capital

Market's value added is a reflection of the accumulated wealth for the investors. According to MVA index, operationally, market evaluation is the effective use of a company's manager, who has used rare resources, thus has stabilized his own status in the company.

MVA has been derived from EVA concept. Net EVA is the current value of a company and MVA equals to the current overall value that is expected from the company in near future; therefore, MVA is an estimation of the current value that is expected from EVA ^[4].

13. Capital Cost: Conceptually, capital cost of a company is the investment opportunity cost for investing in that company through estimating the weighted arithmetic mean of that company's capital cost. It seeks to quantify the average return expected from all investors which

includes the debts related to short term and long term creditors to whom, profit belongs as well as blue-chip investors and ordinary ones. In this model, company's capital cost is calculated through weighted arithmetic mean whose weights are determined based on utilized capital's various resource values. In the following equation, a common formula has been shown for estimating the weighted arithmetic mean of a company's capital cost.

WACC=wi*kj

In the mentioned model: WACC= the weighted arithmetic mean of company`s capital cost W= the weight of each part of resources

K= expected return of each resource

Risk Focused Criteria

14. Beta: Beta index, as one of the risk measuring indexes, has been used since 1980. Beta coefficient is a criterion for calculating systematic risk and can be considered as an index for rating various assets` risks. If beta coefficient of an asset be more than one, its fluctuations in the return would have a more share of market fluctuations, which is called high risk asset. In contrary, assets having a beta coefficient less than one would be considered as fluctuations less than market`s, which is called low risk asset.

$$eta_i = rac{ ext{cov}(r_i,r_m)}{\sigma^2(r_m)}$$

In which, ri is the representative of the share return process and rm is representative of market return, the numerator is the covariance of these two and the denominator is the standard deviation.

15. Excess Return: The difference between company's average return and basis return is called excess return. This difference is called ex post alpha or differential return and is indicated as the following:

Excess return= company`s return- basic return

Basic return can include industry's overall return and company's overall return.

16. Trainer: This criterion is close to the ex post alpha and its other name is the ratio of return to volatility.

The ratio of excess return to volatility= excess return÷ beta

17. Sharp: This criterion is similar to trainer criterion, though in the denominator part, standard deviation of the company's return is utilized instead of beta.

The ratio of excess return to vitality= excess return÷ standard deviation

18. Evaluation ratio: This ratio is also referred as the information ratio, since as the benefit ratio, it evaluates the considered cost which reduces the quality of investor's information through nonsystematic risk ^[6]. Evaluation ratio= Excess return for accepting

nonsystematic risk ÷ nonsystematic risk

Liquidity ratios

- 19. Current ratios:Current assets ÷ current debts
- 20. Acid ratio: (Current assets-stock in hand) ÷ current debts
- 21. Cash ratio:
 - (Cash+ short-term investments) ÷ current debts
- 22. The ratio of operating cash flows to the sale: The ratio of operating cash flows \div sale
- 23. The ratio of operating cash flows to all assets: The ratio of operating cash flows ÷ all assets
- 24. The ratio of operating cash flows to all debts The ratio of operating cash flows ÷ all debts
- 25. The ratio of operating cash flows to the current debts: The ratio of operating cash flows ÷ the current debts

Debt ratios

- 26. The ratio of the sum of debts to all assets: The sum of debts ÷ the sum of assets
- 27. The ratio of the current debts to the sum of debts: Current debts÷ the sum of debts
- 28. Shareholders` equity to the sum of all debts: The sum of shareholders` equity÷ the sum of debts
- 29. The ratio of interest coverage: Earnings before interest and taxes ÷ the cost of interest

Efficiency ratios

- 30. The ratio of asset turnover: Sale ÷ the sum of assets
- 31. The turnover ratio of the current assets: Sale ÷ the sum of the current assets
- 32. The turnover ratio of the fixed assets: Sale \div the net value of fixed assets
- Turnover ratio of long term assets: Sale÷ long terms assets (total asset-current asset)
- 34. Turnover ratio of payable accounts: Sale ÷ payable accounts
- 35. Average period of collecting debts: Average of collecting debts *360 ÷ net sales on account
- 36. Turnover ratio of the stock in hand: Sold goods` prime cost ÷ stock in hand
- 37. Turnover ratio of the working capital: Sale÷ (current assets – current debts)
- 38. Turnover ratio of shareholders` equity:

Sale ÷ the sum of shareholders` equity

Profitability ratios

- 39. The ratio of gross profit to the sale: Gross profit (sale- sold goods` prime cost) ÷ sale
 40. The ratio of profit before tax: Financial costs (operating profit) + the profit before the tax ÷ sale
- 41. The ratio of net profit: Net profit (specific profit and loss after tax)÷ sale
- 42. The ratio of the profit before tax to the shareholders` equity:
 - Pretax profit ÷ the sum of shareholders` equity
- 43. The ratio of public and administrative costs to the sale:

Public and administrative costs÷ sale

The ratios of assets` structure

- 44. The ratio of the current assets to the sum of assets: Current asset÷ the sum of assets
- 45. The ratio of long term assets to the sum of assets: Long term assets ÷ the sum of assets
- 46. The ratio of liquidity to the current assets: Cash+ long term investment ÷ current assets

Growth ratios

- 47. The growth rate of assets:(the sum of assets at the end of period- the sum of assets at the beginning of the period) ÷ the sum of assets at the beginning of the period
- 48. The rate of net profit's growth: (net income at the end of the period- net income at the beginning of the period) ÷ net income at the beginning of the period
- 49. Sale growth rate:

(sale at the end of period- sale at the beginning of the period) \div sale at the beginning of the period

[7]

Introducing Research Factors

This study included 50 indexes in 6 groups of the main criteria, which have been introduced in Table 1-4.

Table 1-4: The results of primary evaluation				
Row	Criteria	Sub-criteria		
1	Cash value added	Consolidation (C1)		
2	Comprehensive liquidity index			
3	Cash conversion cycle			
4	Net cash balance			
5	Tubin`s q			
6	P/E			
7	Capital cost			
8	EVAE	Economic and risk focused (C2)		
9	REVA			
10	MVA			
11	Beta			

12	Excess return	
13	Trainer	
14	Sharp	
15	Evaluation ratio	
16	Current ratio	Liquidity (C3)
17	Acid ratio	
18	Cash ratio	
10	The ratio of operating cash flow to	
19	the sale	
•	The ratio of operating cash flow to	
20	the asset	
	The ratio of operating cash flow to	
21	the debt	
	The ratio of operating cash flow to	
22	the current debt	
23	Liquidity to the current asset	
23	Debt to the asset	
25	Current debt to the all debt	
26	Capital to the debt	
20	Current asset to the all assets	Leverage (C4)
28	Long term assets to the all assets	Levelage (C+)
20	Assets` growth rate	
2)	Assets growin rate	
30	Turnover of the asset	Activity (C5)
31	Turnover of the current asset	neuvily (es)
32	Turnover of the fixed asset	
33	Turnover of the long term asset	
34	furnover	
5.	The average period of collecting	
35	debts	
36	Turnover of the stock in hand	
37	Turnover of the working capital	
0,	Turnover of the shareholders`	
38	equity	
39	Sale growth rate	
40	Interest coverage ratio	Profitability (C6)
41	Gross profit to the sale	1101111011119 (00)
42	The ratio of profit before the tax	
43	The ratio of pet profit	
44	The profit before tax to the capital	
	Administrative and public costs to	
45	the sale	
46	ROA	
47	The return of shareholders` equity	
48	The profit of each share	
49	Net profit's growth rate	
.,	rice prome o growin nuce	

METHODOLOGY

This research was descriptive-analytical in terms of data collection and it was applied regarding the categorization of the research based on its purpose. An applied research is a study in which the theories, use special laws, principles and techniques for solving administrative and real problems. The current research was descriptive in terms of categorizing based on the method. Among various descriptive researches, this study was correlational since it investigated the relationship between criteria as well as the company's performance.

Library studies have been utilized for investigating the literature of the research and for exploring the background of the study. Field studies were used as the method for collecting the real data of the variables. Information related to the organizational investors, their performance and other mentioned variables were extracted through referring to the stock exchange organization as well as using experts` views, Pars Portfolio software and descriptive notes of companies` financial statements. To analyze the collected data and BWM output, Lingo software was used.

RESEARCH FINDINGS The Results of ISM Method The Formation of Structural Similarity Index Matrix

In the first step, SSIM was formed using respondents` ideas. To form SSIM of the experts, the criteria were considered as pairs with each other and the respondents responded to the pair comparisons according to the below spectrum.

- V: Row factor of i leads to the emergence of j column.
- A: Column factor of j leads to the emergence of i row.
- X: Both row and column factors leads to the emergence of each other (i and j factors have a mutual relationship).
- O: There is no relationships between i and j factors.

SSIM has been presented in Table 2-4.

Table 1. Structural similarity index matrix									
	C1 C2 C3 C4 C5 C6								
C1		0	Х	0	А	А			
C2			А	0	0	А			
С3				0	Х	0			
C4					Х	V			
C5						X			
C6									

The Formation of Elementary Matrix

In the second step, the elementary matrix was formed through converting SSIM to zero and one numbers. To do so, the following rules were used:

- In case the sign of ij home be V, number 1 should be placed and for the opposite home, zero number should be placed.
- If the sign of ij home be A, zero number would be placed for that home and number 1 would be placed for the opposite home.
- If the sign of ij home be X, number 1 would be placed for that home and number 1 would also be placed for the opposite home.
- If the sign of ij home be O, zero number would be placed for that home and zero number would be placed for the opposite home, as well.

Elementary matrix has been presented in Table 2.

 Table 2. Elementary matrix

	C1	C2	C3	C4	C5	C6
C1	0	0	1	0	0	0
C2	0	0	0	0	0	0
C3	1	1	0	0	1	0
C4	0	0	0	0	1	1
C5	1	0	1	1	0	1
C6	1	1	0	0	1	0

The Formation of the Adjusted Elementary Matrix

Having obtained SSIM, its internal adjustability should be confirmed. For example, if variable 1 led to variable 2, and variable 2 led to variable 3, then variable 1 should lead to variable 3. In case the accessibility was difficult in the matrix, then the matrix should be improved and such relationships should be made. Thus adjustability was added to the elementary matrix using secondary relationships that may not exist. Regarding Table 3, cells that have been shown with 1*, indicated those relationships that have been formed in the adjusted matrix.

Table 3. Adjusted elementary matrix							
	C1	C2	C3	C4	C5	C6	Penetration Power
C1	1	1*	1	0	1*	0	4
C2	0	1	0	0	0	0	1
C3	1	1	1	1*	1	1*	6
C4	1*	1*	1*	1	1	1	6
C5	1	1*	1	1	1	1	6
C6	1	1	1*	1*	1	1	6
Dependence Amount	5	6	5	4	5	4	

Determining the Factors` Levels

In this step, the sum of input criteria (prerequisites) and output criteria (access) were calculated for each criteria and then the common factors were identified. In this step, the criteria had the highest level whose output (access) set equaled to the common set. Having identified this variable or variables, their row and column were deleted from the table and the operations were replicated on the other criteria. The inputs and outputs were extracted from adjusted elementary matrix (Table 4-4). To do so, the 1 numbers of each row showed the outputs and the 1 numbers of each column equaled to the inputs; to determine the first row, the results have been presented in Table 4-5.

Table 4. Level 1 criteria

Name of the criteria	Output	Input	Commonalities	Level
C1	C1-C2-C3-C5	C1-C3-C4-C5-C6	C1-C3-C5	
C2	C2	C1-C2-C3-C4-C5- C6	C2	1
C3	C1-C2-C3-C4-C5- C6	C1-C3-C4-C5-C6	C1-C3-C4-C5- C6	
C4	C1-C2-C3-C4-C5- C6	C3-C4-C5-C6	C3-C4-C5-C6	
C5	C1-C2-C3-C4-C5- C6	C1-C3-C4-C5-C6	C1-C3-C4-C5- C6	
C6	C1-C2-C3-C4-C5- C6	C3-C4-C5-C6	C3-C4-C5-C6	

In Table 4, level 1 criteria have been extracted that included C2 criterion. Now, to determine second level criteria, it sufficed to delete the row and column of this criterion from that of adjusted elementary matrix (Table 4-4) and do the output and input determination calculations again. The results have been presented in Table 4-6.

Table 5. Level 2 criteria						
Name of the criteria	Output	Input	Commonalities	level		
C1	C1-C3-C5	C1-C3- C4-C5-C6	C1-C3-C5	2		
C3	C1-C3-C4- C5-C6	C1-C3- C4-C5-C6	C1-C3-C4-C5-C6	2		

C4	C1-C3-C4- C5-C6	C3-C4- C5-C6	C3-C4-C5-C6	
C5	C1-C3-C4- C5-C6	C1-C3- C4-C5-C6	C1-C3-C4-C5-C6	2
C6	C1-C3-C4- C5-C6	C3-C4- C5-C6	C3-C4-C5-C6	

In Table 5, level 2 criteria have been extracted that included C1, C3 and C5 criteria. Now, to determine the third level criteria, the row and column of these 3 criteria should be deleted from adjusted elementary matrix (Table 4-4) and the input and output determination calculations had to be done again. The results have been presented in Table 4-7.

Table 6. Level 3 criteria							
Name of the criteria	Output	Input	Commonalities	Level			
C4	C4-C6	C4-C6	C4-C6	3			
C6	C4-C6	C4-C6	C4-C6	3			

Interpretive Structural Modeling (ISM)

In the fifth step, ISM was drawn using the obtained levels of the criteria. In case there was a relationship between i and j variables, this relationship would be indicated using a directional arrow.

The final diagram has been shown in Figure 4-1, in which, encroachment forms have been deleted and levels have been departmentalized.

Figure 1. Research's ISM model

Considering Figure 1, the research model included 5 levels, regarding which, two criteria of S and T were in the fifth level and were amongst the most effective criteria. Level 1

of this model belonged to three criteria including F, G and I, which were impressionable criteria.

Mic Mac Analysis

Moreover, in terms of penetration power and dependency, research model could be shown as Figure 2. Accordingly, only C2 criterion was of dependent kind; such variables have a strong dependency and weak conduction and they

have a high impression and less effect on the system. Other criteria were of intermediary kind and had high dependency and high conductivity, which means that the impression and effect of such criteria were really high; every small change in these variables, would lead to essential changes in the system

Figure 2. Penetration power-dependency matrix

Determining the Weight and the Importance of Factors

In this part, the weight and importance of criteria and subcriteria of the research were determined using BWM model. The primary steps of this method included the determination of the most important and the least important criteria and sub-criteria. In this research, the most important and the least important criteria and sub-criteria were excluded using experts` views; the results have been presented in Table 7.

Table7.Timportant crite	he most importa eria	nt and the least
Group	The most important (the best criteria)	The least important (the worst criteria)
Main criteria	Profitability	Leverage
Consolidation	Tobin`s q	Net cash balance
Economic and risk focused	EVA	Sharp
Liquidity	Current ratio	The ratio of operating cash flow to the assets
Leverage	The ratio of assets` growth	The ratio of the current debts to the all debts
Activity	Inventory turnover	Fixed assets` turnover
Profitability	The dividend of each share	Pre-tax income to the assets

In the next step, the pair comparisons of the best criterion with other criteria (BO) and the pair comparison of the other criteria with the worst criterion (OW) were formed and accommodated to 6 experts so that they could respond to the pair comparisons. After responding, the pair comparisons were integrated using arithmetic mean method so that their weight could be determined through entering into BWM method algorithm, which have been presented in the following parts.

Calculating the Weight of Main Criteria

To calculate the weight of main criteria, firstly the pair comparison of the best criterion "profitability" was formed with other criteria. Similarly, the pair comparison of other criteria was formed with the worst criterion, which was "leverage". Pair comparison results of the main criteria have been presented in Table 8. This table shows the arithmetic mean of 6 experts` views.

Table 8. Pair comparison of the main criteria						
во	The most important: Profitability	OW	The least important: Leverage			
Consolidation	2.621	Consolidation	4.442			
Economic and risk focused	4.642	Economic and risk focused	2.289			
Liquidity	3.302	liquidity	2.884			
Leverage	9.000	leverage	1.000			
Activity	4.610	Activity	2.828			
Profitability	1.000	Profitability	9.000			

Considering Table 8, the linear model of BWM regarding the main criteria was formed as follows:

 $\begin{array}{l} \min z \\ |W6-2.621 \times w1| \leq z \\ |W6-4.642 \times w2| \leq z \\ |W6-3.302 \times w3| \leq z \\ |W6-9 \times w4| \leq z \\ |W6-4.61 \times w5| \leq z \\ |w1-4.442 \times W4| \leq z \\ |w2-2.289 \times W4| \leq z \\ |w3-2.884 \times W4| \leq z \\ |w5-2.828 \times W4| \leq z \\ w1+w2+w3+w4+w5+w6=1 \\ \end{array}$

The above model has been solved in Lingo software, whose output has been presented in Figure 4-1.

Variable	Value	Reduced Cost
Z	0.2772955E-01	0.000000
W6	0.4363494	0.000000
W1	0.1770618	0.00000
W2	0.9997392E-01	0.00000
W3	0.1405448	0.00000
W4	0.4540220E-01	0.00000
W5	0.1006679	0.00000

Figure 3. The output of BWM model's criteria in Lingo software

Considering Figure 3, profitability criterion having the weight of 0.436 obtained the first ranking; consolidation and liquidity criteria, having the weights of 0.177 and 0.141 obtained the second the third rankings, respectively. Moreover, adjustability rate (Z) of this pair comparison was 0.027, showing a high adjustability.

Calculating the Weight of Consolidation Sub-Criteria Consolidation criterion had 7 sub-criteria, whose pair comparisons have been presented in Table 9. This pair comparison table has been derived out of arithmetic means of 6 experts' views.

Table 9.	Pair	comparison	of	consolidation	sub-
criteria					

во	The most important: Tubin`s q	OW	The least important: Net cash balance
Cash value- added	3.557	Cash value- added	3.175
Comprehen sive liquidity index	3.888	Comprehens ive liquidity index	2.884
Cash conversion cycle	3.813	Cash conversion cycle	3.302
Net cash balance	9.000	Net cash balance	1.000
Tubin`s q	1.000	Tubin`s q	9.000
P/E	2.621	P/E	4.610
Asset cost	3.147	Asset cost	3.813

Considering Table 9, the linear model of BWM's consolidation sub-criteria was formed as the following.

min z $|W5-3.557 \times w1| \le z$ $|W5-3.888 \times w2| \le z$ $|W5-3.813 \times w3| \le z$ $|W5-9 \times w4| \le z$ $|W5-2.621 \times w6| \le z$ $|W5-3.147 \times w7| \le z$ $|w1-3.175 \times W4| \le z$ $|w2-2.884 \times W4| \le z$ $|w3-3.302 \times W4| \le z$ $|w6-4.61 \times W4| \le z$ $|w7-3.813 \times W4| \le z$ w1+w2+w3+w4+w5+w6+w7=1

The above model was solved in Lingo software, whose output has been presented in Figure 4-2.

Variable	Value	Reduced Cost
Z	0.2549468E-01	0.000000
W5	0.3694336	0.000000
W1	0.1110285	0.000000
W2	0.1015762	0.000000
W3	0.1035742	0.000000
W4	0.3821544E-01	0.000000
W6	0.1506785	0.000000
W7	0.1254936	0.00000

Figure 5. The output of BWM model regarding the consolidated sub-criteria in Lingo software

Considering Figure 5, among the consolidation sub-criteria, Tubin's q having a weight of 0.369, obtained the first ranking. P/E and capital cost criteria, having the weights of 0.151 and 0.125, respectively, obtained the second and third rankings. The adjustability rate of this pair comparison, also, was 0.025.

Figure 6. Consolidated sub-criteria`s weight

Having used this calculation method, the weights of other sub-criteria were also obtained. Final Weight of Sub-Criteria

Final weight of sub-criteria was obtained through multiplying the weight of criteria in the relative weight of sub-criteria, which have been presented in Table 4-16. This shows that "considering customer's need" had gained the first ranking among all indexes.

Table 10. Final weight of sub-criteria						
Row	Criteria	Weight of the criteria	Sub-criteria	Relative weight of sub- criteria	Final weight of sub- criteria	ranking
1	Consolidation	0.177	Cash value- added	0.111	0.0196	17
2			Comprehensive	0.102	0.0181	20
3			Cash	0.104	0.0184	19

			conversion			
			cycle Net cash			
4			balance	0.038	0.0067	43
5			Tubin`s q	0.369	0.0653	2
6 7			P/E Asset cost	0.151	0.0267	12
/	Economic		Asset Cost	0.125	0.0221	14
8	and Risk focused	0.100	EVA	0.252	0.0252	13
9			REVA	0.124	0.0124	28
10			MVA Pote	0.109	0.0109	31
11			Capital asset	0.099	0.0099	33
12			pricing	0.099	0.0099	33
13			Value added	0.092	0.0092	36
14 15			Sharp	0.095	0.0095	55 48
16			Evaluation	0.085	0.0095	40
10	T • • ••.	0 1 4 1	ratio	0.085	0.0085	40
17	Liquidity	0.141	Current ratio	0.272	0.0384	15
19			Cash ratio	0.142	0.0200	15
			Operating cash			
20			flow`s ratio to	0.102	0.0144	25
			the sale Operating cash			
21			flow ratio to	0.052	0.0073	42
			the asset			
22			Operating cash	0.107	0.0151	22
22			the debts	0.107	0.0131	25
			Operating cash			
23			flow ratio to	0.080	0.0113	29
			the current			
24			Debts to the	0.102	0.01.15	24
24			current asset	0.103	0.0145	24
25	Leverage	0.045	Debts to the	0.126	0.0057	46
			The current			
26			debts to the	0.064	0.0029	50
			overall debts			
27			The asset to the	0.200	0.0090	37
			The current			
28			asset to the all	0.132	0.0059	45
			asset			
20			Long term	0.115	0.0052	47
2)			asset	0.115	0.0052	7/
30			The growth	0.363	0.0163	21
21	Activity	0 101	rate of asset	0.006	0.0007	20
51	Activity	0.101	Current asset	0.080	0.0087	39
32			turnover	0.078	0.0079	41
33			Fixed asset	0.035	0.0035	49
			Long term			
34			asset turnover	0.101	0.0102	32
35			turnover	0.132	0.0133	26
			The average			
36			collecting	0.123	0.0124	27
			debts			
37			Stock in hand	0.184	0.0186	18
			turnover Cycling the			
38			working capital	0.108	0.0109	30
39			Shareholder`s	0.066	0.0067	44
40			equity turnover Sale growth	0.088	0.0080	38
70			Suc Slowin	0.000	0.0007	50

41	Profitability	0.436	rate Interest coverage ratio	0.099	0.0432	5
42			Gross profit's ratio to the sale	0.149	0.0650	3
43			Pretax income ratio	0.071	0.0310	11
44			Net profit ratio	0.105	0.0458	4
15			Pretax income	0.027	0.0161	22
43				0.057	0.0101	22
			Administrative			
46			public costs	0.086	0.0375	8
			ratio to the sale			
47			ROA	0.090	0.0392	6
48			Shareholder`s equity	0.080	0.0349	9
49			Earnings per share	0.205	0.0894	1
50			Net cash balance	0.078	0.0340	10

Tubin`s a	0.0894
rubin 5 q	0.0055
The ratio of net profit	0.0458
	0.0432
ROA	0.0392
	0.0384
General administrative costs	0.0375
Net profit growth rate	0.0349
P/E	0.031
Capital cost	0.0252
Acid ratio	0.02
Stock in hand turnover	0.0196
Comprehensive liquidity index	0.0181
Pretax profit to the capital	0.0161
Liquidity to the current asset	0.0145
Turnover	0.0133
REVA	0.0124 0.0113
Working capital turnover	0.0109
Long term asset turnover	0.0102
Beta	0.0099
Excess return	0.0092
Sale growth rate	0.0089 0.0087
Evaluation ratio	0.0085
Operating cash flow to assets	0.0073 0.0067
Net cash balance	0.0067 0.0059
Debt to asset	0.0057 0.0052
sharp	• 0.0046 • 0.0035
Current debts to the all debts	• 0.0029
	AXIS HUE

Figure 12-4. Final weight of sub-criteria

Aras Technique

Aras¹ method is one of the multiple attribute decision making methods, which means evaluating the cumulative ratio. This method was introduced by Zavadskas and Turskis in 2010. Multiple attribute decision making method of ARAS was based on comparing each item with the ideal presumed amount.

Forming Decision Matrix

The decision matrix of this method is criterion-item based; it is a matrix in which, criteria are placed in the columns and items are placed in the rows and every cell is the score of each item to the criterion.

Determining Presumed Ideal Amount

In this step, an assumed item named A0 is created, regarding which, its ideal state is that its amounts for beneficial criteria equal the highest amount of columns and regarding nonbeneficial criteria, its amounts equal the least.

5 $x_0 = \max [x_i]$ [x_i] , for beneficial criteria

6 $x_0 = \min_{\tau \in \mathbb{Z}} [x_i]$, for non-beneficial criteria

Converting non-beneficial criteria to beneficial ones

Regarding this step, non-beneficial criteria's entries were reversed so that they could be converted to a beneficial criteria. This process converted the decision making matrix to the positive decision making matrix.

Normalizing Decision Making Matrix

In this step, the following relation was utilized to normalize the decision matrix.

8

$$x_{ij}^* = \frac{\mathbf{x}_{ij}}{\sum_{i=0}^{m} \mathbf{x}_{ij}}$$

Weighing Normal Decision Making Matrix

In this step, normal matrix entries were multiplied to the criteria so that a weighing matrix could be obtained.

9 $\hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij}^* * \mathbf{w}_j$

Calculating Aras Index (S) and the Desirability Degree of Items

Using the following relations in this step, Aras index as well as items` desirability degree were calculated; based on which, final ranking was formed.

¹ Additive Ratio Assessmen

10 $S_i = \sum_{j=1}^n \hat{x}_{ij}$

$$k_i = \frac{S_i}{S_i}$$

11

The Results of Aras Method

The purpose behind using Aras method was ranking research items, including 104 companies. The first step of this method was forming decision making matrix. Decision making matrix of Aras method included 49 research indexes as well as 104 companies; every cell of matrix evaluated each company in terms of each index.

In the second step, the assumed ideal amount had to be created based on 5 and 6 relations. In case the criterion had a positive aspect, then the ideal amount would equal to the highest score of that criterion, and if the criterion had a negative aspect, the ideal amount would equal to the least score of that criterion. In this research, though, some of the criteria had an interval or numerical amount as the ideal. The kind of indexes have been presented in table 4-1.

Table 4-1. Kind of indexes	
Name of the index	Kind of the index
Cash value added	Positive
Comprehensive liquidity index	Positive
Cash conversion cycle	Positive
Net cash balance	Positive
Tubin`s q	Positive
P/E	The less the better 0 <x< td=""></x<>
Asset cost	Close to zero 0 <x< td=""></x<>
EVA	Positive
REVA	Positive
MVA	Positive
Beta	Close to one 0 <x<1< td=""></x<1<>
Excess return	Positive
Trainer	Positive
Sharp	Positive
Evaluation ratio	Positive
Current ratio	Close to two 0 <x< td=""></x<>
Quick ratio	Close to one 0 <x< td=""></x<>
Cash ratio	Close to one 0 <x< td=""></x<>
Operating cash flow ratio to the sale	Positive
Operating cash flow ratio to the asset	Positive
Operating cash flow ratio to the	Desitive
current debts	Positive
Liquidity to the current asset	Positive
The ratio of the debts of the asset	Close to zero 0 <x<1< td=""></x<1<>
The ratio of the current debts to the all debts	Close to 0.5 0 <x<1< td=""></x<1<>
The ratio of the asset to the debts	Positive

The current asset's ratio to the all	Class to 0.5 , $0 \le V \le 1$
asset	
Long term asset to the all asset	Close to zero 0 <x<1< td=""></x<1<>
Asset growth rate	Positive
Asset turnover	Positive
Fixed asset turnover	Positive
Long term asset turnover	Positive
turnover	Positive
Average period of collecting debts	Close to zero
Stock in hand turnover	Positive
Cycling the working capital	Positive
Cycling the shareholder's equity	Positive
Sale growth rate	Positive

The third step was using Aras method for converting negative criteria to positive ones based on relation 7. In other words, to convert negative criteria to positive ones, their scores had to be reversed and then, using relation 8, the decision matrix had to be normalized. To normalize, every entry should be divided into the sum of that column's entries. Normalized matrix has been presented in Table 5.

As the fifth step, weighing normal matrix had to be formed. To do so, the criteria's weights, which had been calculated using Entropy method, were multiplied in the normal matrix so that weighing normal matrix could be obtained; this has been represented in Table 6.

In the sixth step, as well, Aras index and items` desirability amounts have been calculated using 10 and 11 relations and based on that, items were ranked; the results of which, have been presented in Table 7 in an ascendant way.

CONCLUSION AND SUGGESTIONS

Using above mentioned techniques, the best companies` ranking is as the following:

Table 7. Aras index and ranking the items				
Rank	Final score	Si	Company name	
	-	0.0767	A0	
50	0.108	0.0083	Aabsal	
79	0.066	0.0050	AzarAb	
19	0.172	0.0132	Alborz Darou	
73	0.081	0.0062	Electric Khodro Shargh	
86	0.057	057 0.0044	Tractor Forging	
00	0.037		Company	
65	0.088	0.0068	Iran Transfo	
45	0.115	0.0088	Iran Khodro	
95	0.040	0.0031	Iran Khodro Diesel	
26	0.152	0.0116	Iran Pharmaceutical Co	

8	0.212	0.0163	Iran Merinus	98	0.025	0.0019	Saipa Diesel
57	0.101	0.0077	Irca Part Sanat	64	0.091	0.0070	Sarma Afarin
90	0.050	0.0039	Behceram	29	0.147	0.0113	Orumieh cement
61	0.097	0.0074	Behnoush	18	0.176	0.0135	Isfahan cement
51	0.106	0.0081	Gorji Biscuit	39	0.126	0.0097	Tehran cement
56	0.102	0.0078	Pars Khazar	32	0.140	0.0107	Shahroud cement
100	0.002	0.0002	Pars Khodro	33	0.138	0.0106	Sofian cement
7	0.215	0.0164	Pars Pharmaceutical Co.	11	0.208	0.0159	Sina Darou
69	0.084	0.0064	Pars Suich	99	0.013	0.0010	Shahdiran
34	0.134	0.0103	Pars Minoo	14	0.187	0.0143	Shishe & gas
24	0.400		Abadan Petrochemical	10		0.0005	Darou Pakhsh Pharma
36	0.129	0.0099	Company	48	0.111	0.0085	Chem. Co.
47	0.112	0.0086	Iran glass wool company	82	0.065	0.0050	Sina Chemical industry
24	0.160	0.0123	Pegah Azarbaijan	102	-0.009	-0.0007	Iran casting industries
59	0.099	0.0076	Pegah Isfahan	27	0.150	0.0115	Barez industry
55	0.103	0.0079	Pegah Khorasan	91	0.050	0.0038	Butane industrial group
103	-0.141	-0.0108	Plascokar saipa		0.400	0.01.40	Khorramdarreh Minoo
10	0.440	0.000	Tractor manufacturing	16	0.182	0.0140	Industrial Company
43	0.119	0.0092	company			0.0155	Iran refractories
93	0.046	0.0035	Tolypers	6	0.230	0.0177	company
96	0.037	0.0028	Charkheshgar	38	0.127	0.0097	Iran Ferrosilice CO
	0.446	0.0110	Aburaihan	80	0.066	0.0050	Khawar spring
30	0.146	0.0112	Pharmaceutical Co.	60	0.098	0.0075	Zae spring
			Osvah Pharmaceutical	3	0.240	0.0184	Foolad Khuzestan
25	0.159	0.0122	Co.	4	0.239	0.0184	Foolad mobarake isfahan
37	0.127	0.0098	Exir Pharmaceutical Co.	35	0.130	0.0100	Foolad Khorasan
			Jaber Ebne Hayyan	94	0.042	0.0032	Fibreiran
28	0.148	0.0114	Pharmaceutical Co.				Sugar factory of the
	0.475	0.0128	Razak Pharmaceutical	41	0.124	0.083	world
21	0.167		Co.	72	0.083	0.0063	Alvand tile
			Zahravi Pharmaceutical	20	0.171	0.0131	Pars tile
12 0.199	0.0152	Co.	46	0.112	0.0086	Takceram co.	
			Farabi Pharmaceutical	78	0.071	0.0054	Hafez tile
31	0.145	0.0111	Co.	75	0.078	0.0060	Saadi tile
		0.080 0.0061	Loghman	17	0.176	0.0135	Sina tile
74	0.080		Pharmaceutical Co.	9	0.212	0.0163	calcimin
			Kosar Pharmaceutical	71	0.083	0.0064	Iran carbon
42	0.120	0.0092	Co.				Iran combine
54	0.103	0.0079	Doodeh Sanati Pars	84	0.062	0.0047	manufacturing co.
			Negin Tabas Coal	23	0.1650	0.0126	Mapna group
52	0.105	0.0081	Company	2	0.374	0.0287	Gol Gohar
76	0.075	0.0058	Tractor Foundary	70	0.083	0.0064	Pars Shahab Co.
		0.125 0.0096	Mashahd wheel	87	0.056	0.0043	Pak Dairy co.
40	0.125		manufacturing Co.	63	0.094	0.0072	Kalber dairy co.
53	0.103	0.0079	Zagros Pharmed Pars Co.	68	0.085	0.0065	Loabiran
88	0.054	0.0042	Zamyad Co.	81	0.065	0.0050	Iranlent
77	0.074	0.0057	Saipa	92	0.046	0.0036	Luleh va mashinsazi Iran
44	0.118	0.0090	Sajna Azin	67	0.086	0.0066	Nirou moharekeh
	~			<i>.</i>			

			machine tools co.
80	0.052	0.0040	Vehicle axile
89	0.053 0.0040	manufacturing co.	
66	0.088	0.0067	Bahonar Copper
62	0.096	0.0074	Iran Manganese mining
1	0.424	0.0325	Iran mineral salts co.
5	0.227	0.0182	National Iranian Copper
3	0.237		industry
15	0.185	0.0142	Daroupakhsh products
58	0.101	0.0077	Mehram
22	0.166	0.0127	Mehr Cam pars
83	0.063	0.0048	Borujerd textile
49	0.110	0.0085	Nasir machine
10	0.211	0.0162	Behran oil company
13	0.191	0.0146	Pars oil company
101	0.000	0.0000	Navard aluminium
85	0.059	0.0046	Navard rolling and steel
97	0.037	0.0028	Tnm co.

References

- 1. Armstrong M. A handbook of human resource management practice. Kogan Page Publishers; 2006.
- 2. Efati Daryani and others. performance management. Farmanesh Publications. Tehran, 2007.
- Kang J, Kim K, Henderson WC. Economic Value Added (EVA): a financial performance measure. Journal of Accounting and Finance Research. 2002 Apr 1;10(1):48.
- Cheng CH, Chen CT, Huang SF. Combining fuzzy integral with order weight average (OWA) method for evaluating financial performance in the semiconductor industry. African Journal of Business Management. 2012 May 30;6(21):6358.
- Koc F. Economic Value Added Approach in Measurement of Financial Performance: An Investigation on Economic Added Values of Holdings and Investment Companies Processed in BIST 100 in Turkey. Journal of Accounting, Finance and Auditing Studies. 2017;3(4):109-36.
- 6. Raii, R., managing developed investment, Samt pub., Tehran, 2009; 420-435.
- Rezai, N., Amir Hosseini, Z. Evaluating the performance using financial ratios through decision making tree algorithm, financial management approach, 2018; No:17, 185-205.