Archive \ Volume.14 2023 Issue 1

A Predictive Model for Identifying the Most Effective Anti-CCR5 Monoclonal Antibody


Abstract

CCR5 (R5) inhibition is increasingly being studied for its potential to prevent, treat, and cure illnesses. R5 is a transmembrane protein that interacts with the CD4 receptor and CXCR4 (X4) of T cells, allowing the attachment of HIV viruses to lymphocytes. Consequently, because R5 inhibition has performed well as a medicinal drug, such as maraviroc, many researchers have speculated that R5 inhibition via binding antibodies may effectively treat HIV patients. However, currently, there is a lack of information about the structural interaction between monoclonal antibodies (mAbs) and R5. The understanding of the structural CCR5 blockade via mAbs is limited. As a consequence, in this study, a predictive model with a sample size of N=160 was performed using non-linear regressions, in which the predicted reaction rates of the target R5 to gp120 interaction based on Michaelis-Menten enzyme kinetics of the inhibitor types (no, inhibitor (Control), competitive (CI), non-competitive (NI), and uncompetitive (UI)) were analyzed for their level to reduce the Vmax and Km of the R5-to-gp120 interaction.At a significant p-value of P<0.05, this study predicted that a non-competitive anti-R5 mAb would be the most effective inhibitor isotype since NI lowered the R5E Vmax to 20 μM/min with only a gp120S Km of 5 nM. A non-competitive anti-R5 mAb may more effectively inhibit the activity of CCR5, which may inform the production of more anti-R5 mAbs that are allosteric inhibitors of CCR5.


Downloads: 90
Views: 112

How to cite:
Vancouver
Hillman T. A Predictive Model for Identifying the Most Effective Anti-CCR5 Monoclonal Antibody. Arch Pharm Pract. 2023;14(1):40-9. https://doi.org/10.51847/d9m2zUfqr4
APA
Hillman, T. (2023). A Predictive Model for Identifying the Most Effective Anti-CCR5 Monoclonal Antibody. Archives of Pharmacy Practice, 14(1), 40-49. https://doi.org/10.51847/d9m2zUfqr4

Download Citation
References

1.        Gilliam BL, Riedel DJ, Redfield RR. Clinical use of CCR5 inhibitors in HIV and beyond. J Transl Med. 2011;9 Suppl 1(Suppl 1):S9. doi:10.1186/1479-5876-9-S1-S9

2.        Qi B, Fang Q, Liu S, Hou W, Li J, Huang Y, et al. Advances of CCR5 antagonists: From small molecules to macromolecules. Eur J Med Chem. 2020;208:112819. 

3.        Brelot A, Chakrabarti LA. CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol. 2018;430(17):2557-89. 

4.        Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1999;96(9):5215-20. doi:10.1073/pnas.96.9.5215

5.        Michael NL, Chang G, Louie LG, Mascola JR, Dondero D, Birx DL, et al. The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat Med. 1997;3(3):338-40. doi:10.1038/nm0397-338

6.        Jacobson JM, Saag MS, Thompson MA, Fischl MA, Liporace R, Reichman RC, et al. Antiviral activity of single-dose PRO 140, a CCR5 monoclonal antibody, in HIV-infected adults. J Infect Dis. 2008;198(9):1345-52. doi:10.1086/592169

7.        Prathipati PK, Mandal S, Destache CJ. A review of CCR5 antibodies against HIV: Current and future aspects. Ther Deliv. 2019;10(2):107-12. doi:10.4155/tde-2018-0072

8.        Chang XL, Webb GM, Wu HL, Greene JM, Abdulhaqq S, Bateman KB, et al. Antibody-based CCR5 blockade protects Macaques from mucosal SHIV transmission. Nat Commun. 2021;12(1):3343. doi:10.1038/s41467-021-23697-6

9.        Hartley O, Martins E, Scurci I. Preventing HIV transmission through blockade of CCR5: rationale, progress and perspectives. Swiss Med Wkly. 2018;148:w14580. 

10.      Chang XL, Reed JS, Webb GM, Wu HL, Le J, Bateman KB, et al. Suppression of human and simian immunodeficiency virus replication with the CCR5-specific antibody Leronlimab in two species. PLoS Pathogens. 2022;18(3):e1010396.

11.      Weichseldorfer M, Tagaya Y, Reitz M, DeVico AL, Latinovic OS. Identifying CCR5 coreceptor populations permissive for HIV-1 entry and productive infection: implications for in vivo studies. J Transl Med. 2022;20(1):1-2.

12.      Claireaux M, Robinot R, Kervevan J, Patgaonkar M, Staropoli I, Brelot A, et al. Low CCR5 expression protects HIV-specific CD4+ T cells of elite controllers from viral entry. Nat Commun. 2022;13(1):1-9.

13.      Gonzalo-Gil E, Rapuano PB, Ikediobi U, Leibowitz R, Mehta S, Coskun AK, et al. Transcriptional down-regulation of ccr5 in a subset of HIV+ controllers and their family members. Elife. 2019;8:e44360.

14.      Mehlotra RK. New Knowledge About CCR5, HIV Infection, and Disease Progression: Is "Old" Still Valuable? AIDS Res Hum Retroviruses. 2020;36(10):795-9. 

15.      Wiredja DD, Tabler CO, Schlatzer DM, Li M, Chance MR, Tilton JC. Global phosphoproteomics of CCR5-tropic HIV-1 signaling reveals reprogramming of cellular protein production pathways and identifies p70-S6K1 and MK2 as HIV-responsive kinases required for optimal infection of CD4+ T cells. Retrovirology. 2018;15(1):1-3.

16.      Kulkarni S, Lied A, Kulkarni V, Rucevic M, Martin MP, Walker-Sperling V, et al. CCR5AS lncRNA variation differentially regulates CCR5, influencing HIV disease outcome. Nat Immunol. 2019;20(7):824-34.

17.      Chang XL, Wu HL, Webb GM, Tiwary M, Hughes C, Reed JS, et al. CCR5 Receptor Occupancy Analysis Reveals Increased Peripheral Blood CCR5+CD4+ T Cells Following Treatment with the Anti-CCR5 Antibody Leronlimab. Front Immunol. 2021;12:794638. doi:10.3389/fimmu.2021.794638

18.      Mohamed H, Gurrola T, Berman R, Collins M, Sariyer IK, Nonnemacher MR, et al. Targeting CCR5 as a Component of an HIV-1 Therapeutic Strategy. Front Immunol. 2022;12:816515. 

19.      Vangelista L, Vento S. The Expanding Therapeutic Perspective of CCR5 Blockade. Front Immunol. 2018;8:1981. 

20.      Ellwanger JH, Kaminski VL, Rodrigues AG, Kulmann-Leal B, Chies JAB. CCR5 and CCR5Δ32 in bacterial and parasitic infections: Thinking chemokine receptors outside the HIV box. Int J Immunogenet. 2020;47(3):261-85.

21.      Scurci I, Martins E, Hartley O. CCR5: Established paradigms and new frontiers for a 'celebrity' chemokine receptor. Cytokine. 2018;109:81-93. 

22.      Boncompain G, Herit F, Tessier S, Lescure A, Del Nery E, Gestraud P, et al. Targeting CCR5 trafficking to inhibit HIV-1 infection. Sci Adv. 2019;5(10):eaax0821.

23.      Amerzhanova Y, Vangelista L. Filling the Gaps in Antagonist CCR5 Binding, a Retrospective and Perspective Analysis. Front Immunol. 2022;13:826418. doi:10.3389/fimmu.2022.826418

24.      Peng P, Chen H, Zhu Y, Wang Z, Li J, Luo RH, et al. Structure-Based Design of 1-Heteroaryl-1,3-Propanediamine Derivatives as a Novel Series of CC-Chemokine Receptor 5 Antagonists. J Med Chem 2018;61(21):9621-36. doi:10.1021/acs.jmedchem.8b01077

25.      Ellwanger JH, Kulmann-Leal B, Kaminski VL, Rodrigues AG, Bragatte MAS, Chies JAB. Beyond HIV infection: Neglected and varied impacts of CCR5 and CCR5Δ32 on viral diseases. Virus Res. 2020;286:198040.

26.      Zhang H, Chen K, Tan Q, Shao Q, Han S, Zhang C, et al. Structural basis for chemokine recognition and receptor activation of chemokine receptor CCR5. Nat Commun. 2021;12(1):4151. 

27.      Wasilko DJ, Johnson ZL, Ammirati M, Che Y, Griffor MC, Han S, et al. Structural basis for chemokine receptor CCR6 activation by the endogenous protein ligand CCL20. Nat Commun. 2020;11(1):1-9.

28.      Scurci I, Akondi KB, Pinheiro I, Paolini-Bertrand M, Borgeat A, Cerini F, et al. CCR5 tyrosine sulfation heterogeneity generates cell surface receptor subpopulations with different ligand binding properties. Biochim Biophys Acta Gen Subj. 2021;1865(1):129753.

29.      Saha S, Shukla AK. The Inside Story: Crystal Structure of the Chemokine Receptor CCR7 with an Intracellular Allosteric Antagonist. Biochemistry. 2019;59(1):12-4.

30.      Larsen O, Lückmann M, van der Velden WJC, Oliva-Santiago M, Brvar M, Ulven T, et al. Selective Allosteric Modulation of N-Terminally Cleaved, but Not Full Length CCL3 in CCR1. ACS Pharmacol Transl Sci. 2019;2(6):429-41. 

31.      Heredia JD, Park J, Brubaker RJ, Szymanski SK, Gill KS, Procko E. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning. J Immunol. 2018;200(11):3825-39.

32.      Zhu Y, Zhao YL, Li J, Liu H, Zhao Q, Wu BL, et al. Molecular binding mode of PF-232798, a clinical anti-HIV candidate, at chemokine receptor CCR5. Acta Pharmacologica Sinica. 2019;40(4):563-8.

33.      Blanpain C, Vanderwinden JM, Cihak J, Wittamer V, Le Poul E, Issafras H, et al. Multiple active states and oligomerization of CCR5 revealed by functional properties of monoclonal antibodies. Mol Biol Cell. 2002;13(2):723-37. doi:10.1091/mbc.01-03-0129

34.      Panda S, Ding JL. Natural antibodies bridge innate and adaptive immunity. J Immunol 2015;194(1):13-20. doi:10.4049/Immunol.1400844

35.      Pastori C, Diomede L, Venuti A, Fisher G, Jarvik J, Bomsel M, et al. Induction of HIV-blocking anti-CCR5 IgA in Peyers's patches without histopathological alterations. J Virol. 2014;88(7):3623-35. doi:10.1128/JVI.03663-13

36.      Van Rompay KK, Hunter Z, Jayashankar K, Peabody J, Montefiori D, LaBranche CC, et al. A vaccine against CCR5 protects a subset of macaques upon intravaginal challenge with simian immunodeficiency virus SIVmac251. J Virol. 2014;88(4):2011-24. doi:10.1128/JVI.02447-13

37.      Chackerian B, Briglio L, Albert PS, Lowy DR, Schiller JT. Induction of autoantibodies to CCR5 in macaques and subsequent effects upon challenge with an R5-tropic simian/human immunodeficiency virus. J Virol. 2004;78(8):4037-47.

38.      Lee B, Sharron M, Blanpain C, Doranz BJ, Vakili J, Setoh P, et al. Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J Biol Chem. 1999;274(14):9617-26.

39.      Bomsel M, Pastori C, Tudor D, Alberti C, Garcia S, Ferrari D, et al. Natural mucosal antibodies reactive with first extracellular loop of CCR5 inhibit HIV-1 transport across human epithelial cells. AIDS. 2007;21(1):13-22. doi:10.1097/QAD.0b013e328011049b

40.      Wu L, LaRosa G, Kassam N, Gordon CJ, Heath H, Ruffing N, et al. Interaction of chemokine receptor CCR5 with its ligands: multiple domains for HIV-1 gp120 binding and a single domain for chemokine binding. J Exp Med. 1997;186(8):1373-81. doi:10.1084/jem.186.8.1373

41.      Venuti A, Pastori C, Lopalco L. The Role of Natural Antibodies to CC Chemokine Receptor 5 in HIV Infection. Front Immunol. 2017;8:1358. doi:10.3389/fimmu.2017.01358

42.      Secchi M, Grampa V, Vangelista L. Rational CCL5 mutagenesis integration in a lactobacilli platform generates extremely potent HIV-1 blockers. Sci Rep. 2018;8(1):1890. 

43.      Zheng Y, Han GW, Abagyan R, Wu B, Stevens RC, Cherezov V, et al. Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV. Immunity. 2017;46(6):1005-17. 

44.      Trkola A, Ketas TJ, Nagashima KA, Zhao L, Cilliers T, Morris L, et al. Potent, broad‐spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140. J Virol. 2001;75(2):579‐88.

45.      Li L, Tian JH, Yang K, Zhang P, Jia WQ. Humanized PA14 (a monoclonal CCR5 antibody) for treatment of people with HIV infection. Cochrane Database Syst Rev. 2014;2014(7):CD008439. doi:10.1002/14651858.CD008439.pub3

46.      Wacker D, Stevens RC, Roth BL. How Ligands Illuminate GPCR Molecular Pharmacology. Cell. 2017;170(3):414-27. doi:10.1016/j.cell.2017.07.009

47.      Vass M, Kooistra AJ, Yang D, Stevens RC, Wang MW, de Graaf C. Chemical Diversity in the G Protein-Coupled Receptor Superfamily. Trends Pharmacol Sci. 2018;39(5):494-512.

48.      Chan HCS, Li Y, Dahoun T, Vogel H, Yuan S. New Binding Sites, New Opportunities for GPCR Drug Discovery. Trends Biochem Sci. 2019;44(4):312-30.

49.      Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, et al. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct Target Ther. 2021;6(1):7. doi:10.1038/s41392-020-00435-w

50.      Wold EA, Chen J, Cunningham KA, Zhou J. Allosteric Modulation of Class A GPCRs: Targets, Agents, and Emerging Concepts. J Med Chem. 2019;62(1):88-127. 

51.      Tan L, Yan W, McCorvy JD, Cheng J. Biased Ligands of G Protein-Coupled Receptors (GPCRs): Structure-Functional Selectivity Relationships (SFSRs) and Therapeutic Potential. J Med Chem. 2018;61(22):9841-78. 

52.      Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther. 2019;200:148-78. 

53.      Sriram K, Insel PA. G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? Mol Pharmacol. 2018;93(4):251-8.

54.      Wright SC, Bouvier M. Illuminating the complexity of GPCR pathway selectivity - advances in biosensor development. Curr Opin Struct Biol. 2021;69:142-9. 

55.      Wingler LM, Lefkowitz RJ. Conformational Basis of G Protein-Coupled Receptor Signaling Versatility. Trends Cell Biol. 2020;30(9):736-47. 

56.      Jones EM, Lubock NB, Venkatakrishnan AJ, Wang J, Tseng AM, Paggi JM, et al. Structural and functional characterization of G protein-coupled receptors with deep mutational scanning. Elife. 2020;9:e54895. 

57.      Thal DM, Glukhova A, Sexton PM, Christopoulos A. Structural insights into G-protein-coupled receptor allostery. Nature. 2018;559(7712):45-53. doi:10.1038/s41586-018-0259-z

58.      Marti-Solano M, Crilly SE, Malinverni D, Munk C, Harris M, Pearce A, et al. Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature. 2020;587(7835):650-6. 

59.      Gusach A, Maslov I, Luginina A, Borshchevskiy V, Mishin A, Cherezov V. Beyond structure: emerging approaches to study GPCR dynamics. Curr Opin Struct Biol. 2020;63:18-25.

60.      Yen HY, Hoi KK, Liko I, Hedger G, Horrell MR, Song W, et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature. 2018;559(7714):423-7. 

61.      Erlandson SC, McMahon C, Kruse AC. Structural Basis for G Protein-Coupled Receptor Signaling. Annu Rev Biophys. 2018;47:1-18. 

62.      Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev. 2021;73(1):120-51. 

63.      Wootten D, Christopoulos A, Marti-Solano M, Babu MM, Sexton PM. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol. 2018;19(10):638-53. 

64.      Sutkeviciute I, Vilardaga JP. Structural insights into emergent signaling modes of G protein-coupled receptors. J Biol Chem. 2020;295(33):11626-42. 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.