Scientists have recently paid a lot of attention to the use of dendrimers in biomedicine. The properties of dendrimers, such as their branching, well-defined globular structures, excellent structural regularity, multivalency, diverse chemical composition, and great biological compatibility, make them appealing for biomedical applications. Several biologically active substances can be incorporated into the three-dimensional structure of dendrimers to create biologically active conjugates. First, a brief overview of dendrimers is given in this state-of-art review, with an emphasis on Poly(amidoamine) (PAMAM) dendrimers and optical sensors. Dendrimers are a newer type of monodisperse polymer with tree-like spherical structures and well-defined sizes and forms. Their peculiar structure significantly affects both their chemical and physical characteristics. PAMAM dendrimer-based optical sensors, employed for the detection of pH, cations, and other analytes, have recently seen advancements, according to reports. Due to its robust synthesis, availability, dendritic structure, and peptide/protein mimic properties, poly(amidoamine) (PAMAM) dendrimers have received the most research attention of all the dendrimers that have been described. The current review is thorough and addresses a different generation of PAMAM dendrimer and related aspects, including i) properties, ii) synthesis, and iii) characterization. The focus is on their uses as well as the state of ongoing medication targeting research at the moment.
1. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):1-10. doi:10.1186/1556-276X-9-247
2. Kalhapure RS, Kathiravan MK, Akamanchi KG, Govender T. Dendrimers–from organic synthesis to pharmaceutical applications: an update. Pharm Dev Technol. 2015;20(1):22-40. doi:10.3109/10837450.2013.862264
3. Augustus EN, Allen ET, Nimibofa A, Donbebe W. A review of synthesis, characterization and applications of functionalized dendrimers. Am J Polym Sci. 2017;7(1):8-14. doi:10.5923/j.ajps.20170701.02
4. Tang Z. Research progress on synthesis and characteristic about dendrimers. InIOP Conference Series: Earth and Environmental Science 2017 Dec 1 (Vol. 100, No. 1, p. 012024). IOP Publishing. doi:10.1088/1755-1315/100/1/012024. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074873/
5. Fox LJ, Richardson RM, Briscoe WH. PAMAM dendrimer-cell membrane interactions. Adv Colloid Interface Sci. 2018;257:1-8. doi:10.1016/j.cis.2018.06.005
6. Tunki L, Kulhari H, Sistla R, Pooja D. Dendrimer-based targeted drug delivery [Internet]. In: Pharmaceutical Applications of Dendrimers. Elsevier; Jan 2020 [cited 2022 Aug 2]. 107-129 p. doi:10.1016/B978-0-12-814527-2.00005-6
7. Li J, Liang H, Liu J, Wang Z. Poly (amidoamine)(PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. Int J Pharm. 2018;546(1-2):215-25. doi:10.1016/j.ijpharm.2018.05.045
8. Luong D, Kesharwani P, Deshmukh R, Amin MC, Gupta U, Greish K, et al. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater. 2016;43:14-29. doi:10.1016/j.actbio.2016.07.015
9. Ma YX, Xing D, Shao WJ, Du XY, La PQ. Preparation of polyamidoamine dendrimers functionalized magnetic graphene oxide for the adsorption of Hg (II) in aqueous solution. J Colloid Interface Sci. 2017;505:352-63. doi:10.1016/j.jcis.2017.05.104
10. Zhang F, Wang B, He S, Man R. Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions. J Chem Eng Data. 2014;59(5):1719-26. doi:10.1021/je500219e
11. Vu MT, Bach LG, Nguyen DC, Ho MN, Nguyen NH, Tran NQ, et al. Modified carboxyl-terminated PAMAM dendrimers as great cytocompatible nano-based drug delivery system. Int J Mol Sci. 2019;20(8):2016. doi:10.3390/ijms20082016
12. Lyu Z, Ding L, Huang AT, Kao CL, Peng L. Poly (amidoamine) dendrimers: Covalent and supramolecular synthesis. Mater Today Chem. 2019;13:34-48. doi:10.1016/j.mtchem.2019.04.004
13. Araújo RV, Santos SD, Igne Ferreira E, Giarolla J. New advances in general biomedical applications of PAMAM dendrimers. Molecules. 2018;23(11):2849. doi:10.3390/molecules23112849
14. Wang H, Shi HB, Yin SK. Polyamidoamine dendrimers as gene delivery carriers in the inner ear: How to improve transfection efficiency. Exp Ther Med. 2011;2(5):777-81. doi:10.3892/etm.2011.296
15. Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications. Materials. 2019;13(1):65. doi:10.3390/ma13010065
16. Pooresmaeil M, Namazi H. Advances in development of the dendrimers having natural saccharides in their structure for efficient and controlled drug delivery applications. Eur Polym J. 2021;148:110356. doi:10.1016/j.eurpolymj.2021.110356
17. Tomalia DA, Fréchet JM. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci A Polym Chem. 2002;40(16):2719-28. doi:10.1002/pola.10301
18. Fana M, Gallien J, Srinageshwar B, Dunbar GL, Rossignol J. PAMAM dendrimer nanomolecules utilized as drug delivery systems for potential treatment of glioblastoma: a systematic review. Int J Nanomed. 2020;15:2789. doi:10.2147/IJN.S243155
19. Gupta U, Agashe HB, Asthana A, Jain NK. Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules. 2006;7(3):649-58. doi:10.1021/bm050802s
20. Devarakonda B, Otto DP, Judefeind A, Hill RA, de Villiers MM. Effect of pH on the solubility and release of furosemide from polyamidoamine (PAMAM) dendrimer complexes. Int J Pharm. 2007;345(1-2):142-53. doi:10.1016/j.ijpharm.2007.05.039
21. Barraza LF, Jiménez VA, Alderete JB. Effect of PEGylation on the structure and drug loading capacity of PAMAM‐G4 dendrimers: A molecular modeling approach on the complexation of 5‐fluorouracil with native and PEGylated PAMAM‐G4. Macromol Chem Phys. 2015;216(16):1689-701. doi:10.1002/macp.201500179
22. Fana M, Gallien J, Srinageshwar B, Dunbar GL, Rossignol J. PAMAM dendrimer nanomolecules utilized as drug delivery systems for potential treatment of glioblastoma: a systematic review. Int J Nanomed. 2020;15:2789. doi:10.2147/IJN.S243155
23. Thanh VM, Nguyen TH, Tran TV, Ngoc UT, Ho MN, Nguyen TT, et. al. Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release. Mater Sci Eng C. 2018;82:291-8. doi:10.1016/j.msec.2017.07.051
24. Gautam SP, Gupta AK, Sharma A, Gautam T. Synthesis and analytical characterization of ester and amine terminated PAMAM dendrimers. Global J Med Res Pharma Drug Dis Toxicol Med. 2013;13(3):7-15.
25. Kurokawa Y, Sone H, Win-Shwe TT, Zeng Y, Kimura H, Koyama Y, et al. Aggregation is a critical cause of poor transfer into the brain tissue of intravenously administered cationic PAMAM dendrimer nanoparticles. Int J Nanomed. 2017;12:3967. doi:10.2147%2FIJN.S125808
26. Boas U, Christensen JB, Heegaard PM. Dendrimers: design, synthesis and chemical properties. J Mater Chem. 2006;16(38):3785-98. doi:10.1039/B611813P
27. Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. Pharm Bioallied Sci. 2014;6(3):139. doi:10.4103/0975-7406.130965
Copyright © 2025 Archives of Pharmacy Practice. Authors retain copyright of their article if they are accepted for publication.
Developed by Archives of Pharmacy Practice