Archive \ Volume.13 2022 Issue 1

An Overview on Recent Advances in Biosensor Technology and its Future Application

, ,

Abstract

With the advent of the development of biosensor devices, scientists are more focused on emerging new biosensor technologies and tools. The existing application of these devices in fields of biomedicine, drug discovery, food safety, and environmental monitoring get remarkable importance. Till today diagnostic tests especially for early detection and monitoring of cancer and anticancer chemotherapeutic agents bearing major challenges despite their simplicity. This review aims to highlight the use of biosensors as diagnostic means along with their future applicability. In the past various achievement in the development of biosensors opened a new gateway for researchers to further modify biosensing elements to enhance their detection ability particularly in cancer that requires continued development and validation of biomarkers and development of ligands for those biomarkers, as well as continued development of sample preparation methods and multi-channel biosensors able to analyze many cancer markers simultaneously. The future for biosensor is promising and bright however require a determined, cost-effective and multi-disciplinary approach to bring out biosensor system from research and development laboratory to market place.


Downloads: 805
Views: 5752

How to cite:
Vancouver
Fatima A, Younas I, Ali MW. An Overview on Recent Advances in Biosensor Technology and its Future Application. Arch Pharm Pract. 2022;13(1):5-10. https://doi.org/10.51847/LToGI43jil
APA
Fatima, A., Younas, I., & Ali, M. W. (2022). An Overview on Recent Advances in Biosensor Technology and its Future Application. Archives of Pharmacy Practice, 13(1), 5-10. https://doi.org/10.51847/LToGI43jil

Download Citation
References

1.          Clark Jr LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci. 1962;102(1):29-45.

2.          Nurunnabi M, Cho KJ, Choi JS, Huh KM, Lee YK. Targeted near-IR QDs-loaded micelles for cancer therapy and imaging. Biomaterials. 2010;31(20):5436-44.

3.          Malima A, Siavoshi S, Musacchio T, Upponi J, Yilmaz C, Somu S, et al. Highly sensitive microscale in vivo sensor enabled by electrophoretic assembly of nanoparticles for multiple biomarker detection. Lab Chip. 2012;12(22):4748-54.

4.          Cammann K. Bio-sensors based on ion-selective electrodes. Fresenius Z Anal Chem. 1977;287(1):1-9.

5.          Wang JX, Sun XW, Wei A, Lei Y, Cai XP, Li CM, et al. Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett. 2006;88(23):233106.

6.          Giepmans BN, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science. 2006;312(5771):217-24.

7.          Situ C, Mooney MH, Elliott CT, Buijs J. Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis. Trends Analyt Chem. 2010;29(11):1305-15.

8.          Tamayo J, Humphris AD, Malloy AM, Miles MJ. Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor. Ultramicroscopy. 2001;86(1-2):167-73.

9.          Edelstein RL, Tamanaha CR, Sheehan PE, Miller MM, Baselt DR, Whitman L, et al. The BARC biosensor applied to the detection of biological warfare agents. Biosens Bioelectron. 2000;14(10-11):805-13.

10.        Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv. 2007;25(5):464-82. doi:10.1016/j.biotechadv.2007.05.004

11.        Chao J, Zhu D, Zhang Y, Wang L, Fan C. DNA nanotechnology-enabled biosensors. Biosens Bioelectron. 2016;76:68-79.

12.        Hasan A, Nurunnabi M, Morshed M, Paul A, Polini A, Kuila T, et al. Recent advances in application of biosensors in tissue engineering. BioMed Res Int. 2014;2014.

13.        Wang J, Musameh M. Carbon-nanotubes doped polypyrrole glucose biosensor. Anal Chim Acta. 2005;539(1-2):209-13.

14.        Gupta R, Chaudhury NK. Entrapment of biomolecules in sol–gel matrix for applications in biosensors: Problems and future prospects. Biosens Bioelectron. 2007;22(11):2387-99.

15.        Bisht V, Takashima W, Kaneto K. An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Biomaterials. 2005;26(17):3683-90.

16.        Doretti L, Ferrara D, Lora S, Schiavon F, Veronese FM. Acetylcholine biosensor involving entrapment of acetylcholinesterase and poly (ethylene glycol)-modified choline oxidase in a poly (vinyl alcohol) cryogel membrane. Enzyme Microb Technol. 2000;27(3-5):279-85.

17.        Citartan M, Gopinath SC, Tominaga J, Tang TH. Label-free methods of reporting biomolecular interactions by optical biosensors. Analyst. 2013;138(13):3576-92. doi:10.1039/c3an36828a

18.        Sang S, Wang Y, Feng Q, Wei Y, Ji J, Zhang W. Progress of new label-free techniques for biosensors: a review. Crit Rev Biotechnol. 2016;36(3):465-81. doi:10.3109/07388551.2014.991270

19.        Turner AP. Biosensors: sense and sensibility. Chem Soc Rev. 2013;42(8):3184-96. doi:10.1039/c3cs35528d.

20.        Harris JM, Reyes C, Lopez GP. Common causes of glucose oxidase instability in in vivo biosensing: a brief review. J Diabetes Sci Technol. 2013;7(4):1030-8.

21.        Wang B, Takahashi S, Du X, Anzai JI. Electrochemical biosensors based on ferroceneboronic acid and its derivatives: a review. Biosensors. 2014;4(3):243-56.

22.        Erden PE, Kılıç E. A review of enzymatic uric acid biosensors based on amperometric detection. Talanta. 2013;107:312-23. doi:10.1016/j. talanta.2013.01.043

23.        Kim J, Imani S, de Araujo WR, Warchall J, Valdés-Ramírez G, Paixão TR, et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron. 2015;74:1061-8. doi:10.1016/j.

24.        Bahadır EB, Sezgintürk MK. Electrochemical biosensors for hormone analyses. Biosens Bioelectron. 2015;68:62-71. doi:10.1016/j.bios.2014.12.054

25.        Hamidi-Asl E, Palchetti I, Hasheminejad E, Mascini M. A review on the electrochemical biosensors for determination of microRNAs. Talanta. 2013;115:74-83. doi:10.1016/j.

26.        Dias AD, Kingsley DM, Corr DT. Recent advances in bioprinting and applications for biosensing. Biosensors. 2014;4(2):111-36. doi:10.3390/ bios4020111

27.        Guo X. Single‐molecule electrical biosensors based on single‐walled carbon nanotubes. Adv Mater. 2013;25(25):3397-408. doi:10.1002/ adma.201301219

28.        Khimji I, Kelly EY, Helwa Y, Hoang M, Liu J. Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods. 2013;64(3):292-8. doi:10.1016/j.

29.        Kwon SJ, Bard AJ. DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J Am Chem Soc. 2012;134(26):10777-9. doi:10.1021/ja304074f

30.        Li M, Li R, Li CM, Wu N. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review. Front Biosci (Schol Ed). 2011;3:1308-31. doi:10.2741/228

31.        Ogi H. Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: A review. Proc Jpn Acad Ser B. 2013;89(9):401-17. doi:10.2183/pjab.89.401

32.        Peng F, Su Y, Zhong Y, Fan C, Lee ST, He Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc Chem Res. 2014;47(2):612-23. doi:10.1021/ar400221g

33.        Shen MY, Li BR, Li YK. Silicon nanowire field-effect-transistor based biosensors: From sensitive to ultra-sensitive. Biosens Bioelectron. 2014;60:101-11. doi:10.1016/j.

34.        Schneider E, Clark DS. Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens Bioelectron. 2013;39(1):1-13. doi:10.1016/j.

35.        Zhou Y, Chiu CW, Liang H. Interfacial structures and properties of organic materials for biosensors: An overview. Sensors. 2012;12(11):15036-62. doi:10.3390/s121115036

36.        Hutter E, Maysinger D. Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol Sci. 2013;34(9):497-507. doi:10.1016/j.

37.        Ko PJ, Ishikawa R, Sohn H, Sandhu A. Porous silicon platform for optical detection of functionalized magnetic particles biosensing. J Nanosci Nanotechnol. 2013;13(4):2451-60. doi:10.1166/jnn.

38.        Lamprecht C, Hinterdorfer P, Ebner A. Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert Opin Drug Deliv. 2014;11(8):1237-53.

39.        Senveli SU, Tigli O. Biosensors in the small scale: methods and technology trends. IET Nanobiotechnol. 2013;7(1):7-21. doi:10.1049/ iet-nbt.2012.0005

40.        Valentini F, Fernàndez LG, Tamburri E, Palleschi G. Single walled carbon nanotubes/polypyrrole–GOx composite films to modify gold microelectrodes for glucose biosensors: study of the extended linearity. Biosens Bioelectron. 2013;43:75-8. doi:10.1016/j.bios.2012.11.019

41.        Su L, Jia W, Hou C, Lei Y. Microbial biosensors: a review. Biosens Bioelectron. 2011;26(5):1788-99. doi:10.1016/j.bios.2010.09.005

42.        Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007;9:257-88. doi:10.1146/annurev. bioeng.9.060906.152025

43.        Kunzelmann S, Solscheid C, Webb MR. Fluorescent biosensors: design and application to motor proteins. Fluorescent Methods for Molecular Motors. 2014:25-47. doi:10.1007/978-3-0348-0856-9_2

44.        De Michele R, Carimi F, Frommer WB. Mitochondrial biosensors. Int J Biochem Cell Biol. 2014;48:39-44. doi:10.1016/j.biocel.2013.12.014

45.        Oldach L, Zhang J. Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. Chem Biol. 2014;21(2):186-97. doi:10.1016/j.

46.        Randriamampita C, Lellouch AC. Imaging early signaling events in T lymphocytes with fluorescent biosensors. Biotechnol J. 2014;9(2):203-12. doi:10.1002/biot.201300195

47.        Johnson BN, Mutharasan R. Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst. 2014;139(7):1576-88. doi:10.1039/c3an01677c

48.        Park K, Jung J, Son J, Kim SH, Chung BH. Anchoring foreign substances on live cell surfaces using Sortase A specific binding peptide. Chem Commun. 2013;49(83):9585-7. doi:10.1039/c3cc44753g

49.        Gutiérrez JC, Amaro F, Martín-González A. Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review. Front Microbiol. 2015;6:48. doi:10.3389/fmicb.00048

50.        Sun JZ, Peter Kingori G, Si RW, Zhai DD, Liao ZH, Sun DZ, et al. Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol. 2015;71(6):801-9. doi:10.2166/wst.2015.035

51.        Scheller FW, Yarman A, Bachmann T, Hirsch T, Kubick S, Renneberg R, et al. Future of biosensors: a personal view. Adv Biochem Eng Biotechnol. 2014;140:1-28. doi:10.1007/102013251

52.        Wang S, Poon GM, Wilson WD. Quantitative investigation of protein-nucleic acid interactions by biosensor surface plasmon resonance. Methods Mol Biol. 2015;1334:313-32. doi:10.1007/978-1-4939-2877-4_20

53.        Arlett JL, Myers EB, Roukes ML. Comparative advantages of mechanical biosensors. Nat Nanotechnol. 2011;6(4):203-15. doi:10.1038/ nnano.2011.44

54.        Tothill IE. Biosensors for cancer markers diagnosis. Semin Cell Dev Biol. 2009;20(1):55-62.

55.        Zhang Z, Liu J, Qi ZM, Lu DF. In situ study of self-assembled nanocomposite films by spectral SPR sensor. Mater Sci Eng C. 2015;51:242-7. doi:10.1016/j.msec.2015.02.026

 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.