In this study, the antibacterial activity of 11 preparations of drugs was determined by disc diffusion method in agar. Suspensions (0.5×108 CFU) were prepared from the daily cultures of Enterobacteriaceae, Pseudomonadaceae, Staphylococcaceae, Bacillaceae, Listeriaceae, Campylobacteraceae, Nocardiaceae, and Saccharomycetaceae family. The resulting suspensions were cultured on Mueller-Hinton agar, followed by cultivation for 24h. Disks impregnated with the studied preparation were placed on top of the passages.
The drug does not dissolve in water, so we used a dilution in 70% ethyl alcohol. The in vitro experiment showed the positive antibacterial effect of 11 preparations on cryogenic strains of Enterobacteriaceae microorganisms: Escherichia coli, Enterococus faecalis, Proteus vulgaris, Serratia marcenses, Klebciella pneumoniae, Salmonella adobraco, Salmonella typhimurium; Pseudomonadaceae families: Pseudomonas aeruginosa, Staphylococcaceae microorganisms: Staphylococcus aureus; Staphylococcus epidermidis; Bacillaceae families: Bacillus subtilis, Listeriaceae: Listeria monocytogenes, Listeria іnnocua, Listeria ivanovi; Campylobacteraceae: Campylobacter jejuni; Nocardiaceae: Rhodococcus equi, and yeasts family Saccharomycetaceae: Candida albicans.
The investigated extracts of 5-(furan-2-yl-,5-bromofuran-2-yl)-4H-1,2,4-triazole-3-thiol, 2-(5-(furan-2-yl-, 5-bromofuran-2-yl)-4H-1,2,4-triazole-3-ylthio) acetate, 5-R-2-(furan-2-yl-,5-bromofuran-2-yl) thiazolo [3,2-b] [1,2,4] triazole-4 (5H)-one physicochemical properties can be recommended for additional investigations against polyresistant strains of the mentioned microorganisms.
Effective medicines play a key role in public health care and stable veterinary well-being of livestock. This study indicated that the evaluated preparation more intensively affects multiresistant microorganisms than the kanamycin sodium salt.
1. Tiwari R, Sandil S, Nain P, Kaur J. Bacteriological Analysis with Antimicrobial Sensitivity and Resistance Pattern in Blood Culture of Septicemic Patient from Different Wards of a Tertiary Care Hospital in India. Int J Pharm Phytopharmacol Res. 2020;10(4):112-9.
2. Alzaid A, Alosaimi M, Alkahtani KF, Alshehri BA, Asiri AE, Asiri AM, et al. Saudi Parents' Knowledge, Attitudes, and Practices Regarding Antibiotic use for Upper Respiratory Tract Infections in Children. Int J Pharm Res Allied Sci. 2020;9(1):115-20.
3. Boyko OO, Zazharska NM, Brygadyrenko VV. The influence of the extent of infestation by helminths upon changes in body weight of sheep in Ukraine. Visn Dnipropetr Univ Biol Ecol. 2016;24(1):3-7.
4. Zazharska N, Boyko O, Brygadyrenko V. Influence of diet on the productivity and characteristics of goat milk. Indian J Anim Res. 2018;52(5):711-7.
5. Zazharskyi VV, Davydenko P, Kulishenko O, Chumak V, Kryvaya A, Biben IA, et al. Bactericidal, protistocidal and nematodicidal properties of mixtures of alkyldimethylbenzyl ammonium chloride, didecyldimethyl ammonium chloride, glutaraldehyde and formaldehyde. Regul Mech Biosyst. 2018;9(4):540-5.
6. Tkachenko AA, Davydenko PO, Zazharskiy VV, Brygadyrenko VV. Biological properties of dissociative L- and other forms of Mycobacterium bovis. Visn Dnipropetr Univ Biol Ecol. 2016;24(2):338-46.
7. Grigoryan LA, Kaldrikyan MA, Melik-Ogandzhanyan RG, Arsenyan FG. Synthesis and antitumor activity of 2-N-and 3-S-substituted 5-[2-(4-) benzyloxyphenyl]-1, 2, 4-triazoles and acylhydrazides. Pharm Chem J. 2012;46(9):11-5.
8. Bansode S, Kamble R. Synthesis of novel 2-(3′-aryl-sydnon-4′-ylidene)-5′-substituted-[1, 3, 4]-thiadiazolylamines and [1, 3, 4]-thiadiazol-2′-yl-3-oxo-[1, 2, 4]-triazoles as antimicrobial agents. Med Chem Res. 2012;21(6):867-73.
9. Bihdan OA. Synthesis, physicochemical and biological properties of 1,2,4-triazole-3-thion derivatives containing fluorophenyl substituents: Diss. PhD of Pharmaceutical science. - Zaporizhzhia; 2015. 205 p.
10. Khanage Shantaraman G, Mohite Popat B, Pandhare Ramadas B, Raju Appala S. Synthesis and antimicrobial activity evaluation of some substituted N'[arylidene]-2-(3-methyl-5-pyridin-4-yl-1H-1,2,4-triazol-1-yl) acetohydrazide compounds. Biointerface Res Appl Chem. 2012;2(5):417-23.
11. Parchenko VV. Synthesis, physicochemical and biological properties of 1,2,4-triazole-3-thione derivatives containing furan kernel: Diss. PhD of Pharmaceutical science. Kyiv; 2006. 207 p.
12. Pruglo ES. Synthesis and biological properties of 3-S-substituted 5-Alk, -Ar, -Het-4 (H) -R-1,2,4-triazole: Diss. Doc. of Pharmaceutical science. – Zaporizhzhia; 2019. 490 p.
13. Parchenko VV. Antiviral activity of 1,2,4-triazole derivatives. Pharm J. 2011;(3):49-53.
14. Parchenko VV. Synthesis, physico-chemical and biological properties of the 1,2,4-triazole-3-thione 5-furilderivatives: Diss. Doc. of Pharmaceutical science. Zaporizhzhia; 2014. 361 p.
15. Paclobutrazole. Available from: http://www.plant-growth-regulator.com/plant-growth-regulator/control-overgrowth-plant-hormones/plant-growth-hormone-paclobutrazol.html
16. Fortis Combi. Available from: http://fortis-combi.com
17. Shcherbyna RO, Danilchenko DM, Parchenko VV, Panasenko OI, Knysh EH, Hromyh NA, et al. Studying of 2-((5-R-4-R-1-4H-1, 2, 4-triazole-3-Yl) Thio) acetic acid salts influence on growth and progress of blackberries (KIOWA Variety) propagules. Res J Pharm Biol Chem Sci. 2017;8(3):975-9.
18. Danilchenko DM, Parchenko VV. Antimicrobial activity of new 5-(furan-2-yl)-4-amino-1,2,4-triazole-3-thiol derivatives. Zaporozhye Med Mag. 2017;19(1):105-7.
19. Bihdan OA, Parchenko VV. Some aspects of synthesis 3-(2-florphenyl)-6-R1-[1,2,4]triazol[3,4-b][1,3,4]thiadiazole and 3-(2-, 3-ftorphenyl)-6-R2-7H[1,2,4]triazolo[1,3,4]tiadiazines. Res J Pharm Biol Chem Sci. 2018;9(3):463-70.
Copyright © 2024 Archives of Pharmacy Practice. Authors retain copyright of their article if they are accepted for publication.
Developed by Archives of Pharmacy Practice