Archive \ Volume.14 2023 Issue 3

Assessment of the Risk of Hypoxia During Pregnancy by Analyzing the Permeability of Erythrocyte Membranes

, , , , ,


 Among the total number of newborns, about 11% face hypoxia problems. It is hypoxia that becomes the main cause of premature birth, fetal and newborn mortality, as well as various pathologies. Fetal respiration passes through the placenta with the participation of the erythrocytes. Thus, fetal respiration is affected by the rate of passage of erythrocytes through small blood capillaries. Ultimately, the elasticity, area, and permeability of the erythrocyte membrane have a direct impact on the quality of fetal intrauterine respiration. This article discusses the main methods of studying the dynamic characteristics of erythrocytes and also analyzes the number of anion exchangers on the erythrocyte membrane. The experiment involved 4 pregnant women, two of whom have a risk of premature birth. These patients undergo tocolytic therapy, the purpose of which is to reduce the risk of premature birth. As a result of the study, the dynamics of changes in the ratio of dynamic strength to the elasticity of the erythrocyte membrane, the amount of band 3 protein, as well as the dynamics of the CO2-O2 exchange rate during tocolytic therapy of pregnant patients are determined.

Downloads: 266
Views: 781

How to cite:
Salikhova LR, Khantueva KK, Magomedkerimova NN, Arganov FI, Tambieva TS, Brodskaya TA. Assessment of the Risk of Hypoxia During Pregnancy by Analyzing the Permeability of Erythrocyte Membranes. Arch Pharm Pract. 2023;14(3):48-52.
Salikhova, L. R., Khantueva, K. K., Magomedkerimova, N. N., Arganov, F. I., Tambieva, T. S., & Brodskaya, T. A. (2023). Assessment of the Risk of Hypoxia During Pregnancy by Analyzing the Permeability of Erythrocyte Membranes. Archives of Pharmacy Practice, 14(3), 48-52.

Download Citation
  1. Zhao H, Wong RJ, Stevenson DK. The Impact of Hypoxia in Early Pregnancy on Placental Cells. Int J Mol Sci. 2021;22(18):9675. doi:10.3390/ijms22189675
  2. Greer JJ. Control of breathing activity in the fetus and newborn. Compr Physiol. 2012;2(3):1873-88. doi:10.1002/cphy.c110006
  3. Kimber-Trojnar Z, Leszczyńska-Gorzelak B, Marciniak B, Bartosiewicz J, Oleszczuk J. Tocolytic therapy in threatened preterm labor. Ginekol Pol. 2010;81(2):120-4.
  4. Hebbar S, Misha M, Rai L. Significance of maternal and cord blood nucleated red blood cell count in pregnancies complicated by preeclampsia. J Pregnancy. 2014;2014:496416. doi:10.1155/2014/496416
  5. Nigra AD, Casale CH, Santander VS. Human erythrocytes: cytoskeleton and its origin. Cell Mol Life Sci. 2020;77(9):1681-94. doi:10.1007/s00018-019-03346-4
  6. Barreto L, Gomez F, Lourenço PS, Freitas DG, Soares J, Berto-Junior C, et al. Quantitative Analysis of Viscoelastic Properties of Red Blood Cells using Optical Tweezers and Defocusing Microscopy. J Vis Exp. 2022;(181).
  7. Sirs JA. Structure of the erythrocyte. J Theor Biol. 1970;27(1):107-15. doi:10.1016/0022-5193(70)90132-3
  8. Bellelli A, Brunori M. Control of Oxygen Affinity in Mammalian Hemoglobins: Implications for a System Biology Description of the Respiratory Properties of the Red Blood Cell. Curr Protein Pept Sci. 2020;21(6):553-72. doi:10.2174/1389203721666200203151414
  9. Benjamin JT, Dickens MD, Ford RF, Hawkes DL, Machen CW, Perriello VA, et al. Normative data of hemoglobin concentration and free erythrocyte protoporphyrin in private pediatric practice: a 1990 update. Clin Pediatr (Phila). 1991;30(2):74-6. doi:10.1177/000992289103000201
  10. Kuchel PW, Fackerell ED. Parametric-equation representation of biconcave erythrocytes. Bull Math Biol. 1999;61(2):209-20. doi:10.1006/bulm.1998.0064
  11. Risinger M, Kalfa TA. Red cell membrane disorders: structure meets function. Blood. 2020;136(11):1250-61. doi10.1182/blood.2019000946
  12. Demchenkov EL, Nagdalian AA, Budkevich RO, Oboturova NP, Okolelova AI. Usage of atomic force microscopy for detection of the damaging effect of CdCl2 on red blood cells membrane. Ecotoxicol Environ Saf. 2021;208:111683. doi:10.1016/j.ecoenv.2020.111683
  13. Kodippili GC, Giger K, Putt KS, Low PS. DARC, Glycophorin A, Band 3, and GLUT1 Diffusion in Erythrocytes: Insights into Membrane Complexes. Biophys J. 2020;119(9):1749-59. doi:10.1016/j.bpj.2020.09.012
  14. Brun JF, Varlet-Marie E, Myzia J, Raynaud de Mauverger E, Pretorius E. Metabolic Influences Modulating Erythrocyte Deformability and Eryptosis. Metabolites. 2021;12(1):4. doi:10.3390/metabo12010004
  15. Jennings ML. Cell physiology and molecular mechanism of anion transport by erythrocyte band 3/AE1. Am J Physiol Cell Physiol. 2021;321(6):C1028-59. doi:10.1152/ajpcell.00275.2021
  16. Sae-Lee W, McCafferty CL, Verbeke EJ, Havugimana PC, Papoulas O, McWhite CD, et al. The protein organization of a red blood cell. Cell Rep. 2022;40(3):111103. doi:10.1016/j.celrep.2022.111103
  17. King VJ, Bennet L, Stone PR, Clark A, Gunn AJ, Dhillon SK. Fetal growth restriction and stillbirth: Biomarkers for identifying at-risk fetuses. Front Physiol. 2022;13:959750. doi:10.3389/fphys.2022.959750
  18. Bazhenova AA, Guryanova NI, Guryanov GS, Alieva HAV, Kachmazova DT, Khripunova AA, et al. In-Vitro Study of the Properties of Components for the Synthesis of Sorbent for Low-Density Lipoprotein Apheresis. Pharmacophore. 2021;12(3):37-41. doi:10.51847/BsjhKFW0Kd
  19. Taufiqurrahman T, Christyaningsih J. The Effect of Moringa Oleifera L. Against Serum Protein and Tissue in Pregnancy. Pharmacophore. 2021;12(6):55-60. doi:10.51847/8KAjIhXlCP
  20. Vagabov IU, Kafarov ES, Zenin OK. Variants of Blood Supply to Kidney Segments According to 3D Anatomical Analysis. Entomol Appl Sci Lett. 2021;8(1):60-5.





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.