Archive \ Volume.12 2021 Issue 3

Evaluation of the Antibacterial Activity of a New Bisiridoid Isolated from Cordia myxa “Boraginaceae”

, , , , , , , ,

Abstract

The objective of this work was to establish a scientific basis for the antibacterial action of chemical constituents isolated from Cordia myxa (Boraginaceae). The isolation and characterization of compounds were carried out respectively by using column chromatography, 1H NMR and 13C NMR, HSQC, HMBC, COSY, and by comparing with literature data. Compound 2 was tested on two gram (-) bacteria, E. coli and Salmonella typhi. in Mueller-Hinton agar and broth. Several classes of antibiotics were tested on the two strains; those with the best results were considered as references and methanol as the negative control. Two new terpenoids were isolated from the roots and branches of Cordia myxa. Compound 1, the 3β-urs-12, 20(30)-dien-28-oic-acid was isolated from the branches and compound 2, the Cordiridoid A which is a bisiridoid, was isolated from the roots. It is for the first time that, these compounds were described from the Cordia myxa and it is the first time that bisiridoids are reported from the Cordia genus. The results revealed the antibacterial activity on the bacterial strains at a dose-dependent. However, the larger dose of 40mg/ml had better antibacterial potential on both E. coli (diameter of inhibition zone, DIZ=19±0.1 mm; Minimum inhibition concentration, MIC=40mg/ml; MIC=0.5mg/ml) and Salmonella typhi (DIZ=22±0.1mm; 40mg/ml; MIC=0.28mg/ml) strains.



How to cite:
Vancouver
Bernard D, Matthieu M, Djaouda M, Tchoukoua A, Bale A, Hassana Y, et al. Evaluation of the Antibacterial Activity of a New Bisiridoid Isolated from Cordia myxa “Boraginaceae”. Arch Pharm Pract. 2021;12(3):41-7. https://doi.org/10.51847/WK3oEnzD6n
APA
Bernard, D., Matthieu, M., Djaouda, M., Tchoukoua, A., Bale, A., Hassana, Y., Moise, D., Alain, M., & Benoit, L. (2021). Evaluation of the Antibacterial Activity of a New Bisiridoid Isolated from Cordia myxa “Boraginaceae”. Archives of Pharmacy Practice, 12(3), 41-47. https://doi.org/10.51847/WK3oEnzD6n

Download Citation
References

1.        Haddouchi F, Chaouch TM, Ksouri R. Phytochemical screening and in vitro antioxydant activities of aqueaous-extracts of Helichrysum stoechas subsp. Rupestre and Phagnalon saxatile subsp. Saxatile. Chin J Nat Mad. 2014;12(6):415-22.

2.        Kanjikar AP. On Anti-Diabetic Potential of Phyto-nanoparticles Comparison with Hormonal Therapy and Medicinal Plants. Int J Pharm Phytopharmacol Res. 2019;9(1):103-11.

3.        Alasmari A. Phytomedicinal potential characterization of medical plants (Rumex nervosus and Dodonaea viscose). J Biochem Technol. 2020;11(1):113-21.

4.        Jeanvoine A, Bouxom H, Leroy J, Gbaguidi-Haore H, Bertrand X, Slekovec C. Resistance to third-generation cephalosporins in Escherichia coli in the French community: The times they are a-changin'?. Int J Antimicrob Agents. 2020;55(5):105909.

5.        Haddouchi F, Zerhouni K, Sidi-Yekhelef A. Evaluation of antimicrobial activity of various extraits of Helichrysu m stoechas. Newsl Liege Sci Royal Soc. 2016;85:152-9.

6.        National Institute of Public Health of Québec. Mesures de prévention et de contrôle de la transmission des bacilles Gram négatif multirésistants dans les milieux de soins aigus au Québec. 2015;(2022):16.

7.        Taylor TA, Unakal CG. Staphylococcus Aureus. [Updated 2020 Aug23]. In: StatPearls [Internet]. Treasure Island(FL): StatPearls Publishing: 2020 Jan. Available from: https:/www.ncbi.nlm.nih.gov/books/ NBK441868/

8.        Travert B, Rafat C, Mariani P, Cointe A, Dossier A, Coppo P, et al. Shiga Toxin-Associated Hemolytic Uremic Syndrome: Specificities of Adult Patients and Implications for Critical Care Management. Toxins. 2021;13(5):306.

9.        Bintsis T. Foodborne pathogens. AIMS Microbiol. 2017;3(3):529-63.

10.      Mbuni YM, Wang S, Mwangi BN, Mbari NJ, Musili PM, Walter NO, et al. Medicinal plants and their traditional uses in local communities around Cherangani Hills, Western Kenya. Plants. 2020;9(3):331.

11.      Hamdia MS, Al-Faraji AS. Evaluation of Inhibitory Activity of Cordia Myxa Fruit Extract on Microorganisms that Causes Spoilage of Food and Its Role in the Treatment of Certain Disease States. Evaluation. 2017;7(2):2224-3208.

12.      Bernard D, Mathieu M, Djaouda M, Tchoukoua A, Romeo WB, Alain M, et al. Antibacterial Effects of Chemical Constituents Isolated from the Roots of Cordia myxa (Boraginaceae) on Salmonella typhi (Enterobacteriaceae). Am J Chem Biochem Eng. 2021;5(1):1-7.

13.      Hudzicki J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. Am Soc Microb. 2016:1-23.

14.      Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6(2):71-9.

15.      Nganso YO, Tchana EM, Kahouo AD, Abah K, Fomena H, Mamoudou H. Inhibitory Effect and Antimicrobial Activity of Secondary Metabolites of Khaya Senegalensis (Desr.) A. Juss. (Meliaceae). Science. 2020;8(4):92-105.

16.      Martí M, Frígols B, Serrano-Aroca A. Antimicrobial characterization of advanced materials for bioengineering applications. J Vis Exp. 2018;(138):e57710. doi:10.3791/57710

17.      Eloff JN. Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complement Altern Med. 2019;19(1):1-8.

18.      Chouna JR, Nkeng-Efouet-Alango P, Lenta BN, Sewald N. Antimicrobial triterpenes from the stem bark of Crossopteryx febrifuga. Z Naturforsch C. 2015;70(7-8):169-73.

19.      Gao P, Li L, Peng Y, Piao S, Zeng N, Lin H, et al. Triterpenes from fruits of Rosa laevigata. Biochem Syst Ecol. 2010;38(3):457-9.

20.      Harisolo R, Chardin SS, Philomene AYK, Timothe O, Assamoi A. Contribution à l’etude phytochimique de Morinda morindoides (Baker) Milne-Redt (Rubiacée) et de Mezoneuron angolense Oliv (Caesalpiniaceae). Eur J Sci Res. 2009;28:621-6.

21.      Kabengele CN, Ngoyi EM, Kasiama GN, Kilembe JT, Matondo A, Inkoto CL, et al. Antihelminthic Activity, Phytochemical Profile and Microscopic Features of Ocimum basilicum Collected in DR Congo. Asian J Biol. 2020:42-50.

22.      Usmanov DA, Ramazanov NS, Yusupova UY, Kurilov DV, Kachala VV, Krukovskaya NV, et al. Iridoids from Phlomis ostrowskiana Regel plant. Russ Chem Bull. 2019;68(12):2275-8.

23.      Zhang C, Liu C, Qu Y, Cao Y, Liu R, Sun Y, et al. LC–MS-Based Qualitative Analysis and Pharmacokinetic Integration Network Pharmacology Strategy Reveals the Mechanism of Phlomis brevidentata HW Li Treatment of Pneumonia. ACS Omega. 2021;6(6):4495-505.

24.      Thierry H. Chemical, chemiotaxonomical and pharmacological investigations of Lamiales producer of antioxidant: Marrubium peregrinum, Ballota larendara, Ballota pseudodictannus (Lamiacees) and Lippia alba (Verbanacees). Thesis of Doctorat, University o-f sciences and technologies of Lille-Lille1, France. 2006:165-8.

25.      Nassar MS, Hazzah WA, Bakr WM. Evaluation of antibiotic susceptibility test results: how guilty a laboratory could be?. J Egypt Public Health Assoc. 2019;94(1):1-5.

26.      Xiao XN, Wang F, Yuan YT, Liu J, Liu YZ, Yi X. Antibacterial activity and mode of action of dihydromyricetin from Ampelopsis grossedentata leaves against food-borne bacteria. Molecules. 2019;24(15):2831.

27.      Li ZH, Cai M, Liu YS, Sun PL, Luo SL. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules. 2019;24(8):1577.

28.      Jasiem TM, Al-mugdadi SF, Aljubory IS, Latef QN. Phytochemical study and antibacterial activity of crude alkaloids and mucilage of Cordia myxa in Iraq. Int J Pharm Sci Rev Res. 2016;39(1):232-6.

29.      Yala D, Merad AS, Mohamedi D, Ouar Korich MN. Classification et mode d’action des antibiotiques. Med Maghreb. 2001;7(91):12.

30.      Ben Abdallah R, Frikha D, Maalej S, Sassi S. In vitro evaluation of the antibacterial and antifungal activities of marine algae. J Inf Med sfax. 2019;(31):38-44.

 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.