Archive \ Volume.13 2022 Issue 2

Evaluation of the Anticoagulant Activities of Cucumis melo Rind Powder In Vitro: Preliminary Novel Findings

Farida Benmeziane Derradji , Sara Aoun
Abstract

The first study of the anticoagulant effect of Cucumis melon rind powder extracts is herein reported. The anticoagulant potency of melon (Cucumis melo) rind powder (MRP) extracts has been explored using the cephalin kaolin time (TCK) test and the Quick time (TQ) test. The extraction was performed using three solvents (methanol, acetone, and n-butanol) at 80 %, in addition to distilled water. Results have shown that the aqueous extract had no anticoagulant capacity, while the methanolic and acetonic extracts had heparin-like anticoagulant activity. The anticoagulant effect was observed on the endogenous, exogenous, and common pathways of coagulation with a highly marked effect on the exogenous pathway than on the endogenous pathway. Butanolic extract had a very significant (p ˂ 0.05) anticoagulant activity which shows promise as an alternative anticoagulant therapy. This study, the first of its kind had evidenced the anticoagulant abilities of Cucumis Melo rinds. Therefore, this by-product could be deployed in medicine to manage and control bleeding and blood coagulation disorders.



How to cite:
Vancouver
Derradji F B, Aoun S. Evaluation of the Anticoagulant Activities of Cucumis melo Rind Powder In Vitro: Preliminary Novel Findings. Arch. Pharm. Pract. 2022;13(2):25-9. https://doi.org/10.51847/JbvgCia2FV
APA
Derradji, F. B., & Aoun, S. (2022). Evaluation of the Anticoagulant Activities of Cucumis melo Rind Powder In Vitro: Preliminary Novel Findings. Archives Of Pharmacy Practice, 13(2),25-29. https://doi.org/10.51847/JbvgCia2FV

Download Citation
References

1.        Bian C, Wang Z, Shi J. Extraction optimization, structural characterization, and anticoagulant activity of acidic polysaccharides from Auricularia auricula-judae. Molecules. 2020;25(3):710. doi:10.3390/molecules25030710.

2.        Lichota A, Szewczyk EM, Gwozdzinski K. Factors affecting the formation and treatment of thrombosis by natural and synthetic compounds. Int J Mol Sci. 2020;21(21):7975. doi:10.3390/ijms21217975.

3.        Thoyajakshi RS, Poornima D. Anticoagulant, fibrinogenolytic and anti-platelet aggregation activities of Lablab purpureus (L.) Sweet seed radicle aqueous extract. Plant Sci Today. 2021;8(1):89-94. doi:10.14719/pst.2021.8.1.917.

4.        Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol. 2021;18(9):666-82. doi:10.1038/s41569-021-00552-1.

5.        Liu J, Xu D, Xia N, Hou K, Chen S, Wang Y, et al. Anticoagulant activities of indobufen, an antiplatelet drug. Molecules. 2018;23(6):1452. doi:10.3390/molecules23061452.

6.        Chamara AMR, Thiripuranathar G. Assessment of haemostatic activity of medicinal plants using in vitro methods: A Concise Review. IOSR J Pharm Biol Sci. 2020;15(1):26-34. doi:10.9790/3008-1501022634.

7.        Ebrahimi F, Torbati M, Mahmoudi J, Valizadeh H. Medicinal plants as potential hemostatic agents. J Pharm Pharm Sci. 2020;23(1):10-23. doi:10.18433/jpps30446.

8.        Michel J, Abd Rani NZ, Husain K. A review on the potential use of medicinal plants from Asteraceae and Lamiaceae plant family in cardiovascular diseases. Front Pharmacol. 2020; 11:852. doi:10.3389/fphar.2020.00852.

9.        Lamponi S. Bioactive natural compounds with antiplatelet and anticoagulant activity and their potential role in the treatment of thrombotic disorders. Life. 2021;11(10):1095. doi:10.3390/life11101095.

10.      Kleszken E, Timar AV, Memete AR, Miere F, Vicas SI. On Overview Of Bioactive Compounds, Biological And Pharmacological Effects Of Mistletoe (Viscum Album L). Pharmacophore. 2022;13(1):10-26. doi:10.51847/Tmo2sXGQRs.

11.      Al Jabr FA, Saif MA, Al Zaid AS, Al Homood MI, Al Thani HA, Al Qadheeb AM. Red and White Cabbage Extracts: Antioxidant Effects on Bovines Albumins. Int J Pharm Res Allied Sci. 2020;9(3):97-104.

12.      Dimitrova B, Vitanska R, Gevrenova R, Zheleva-Dimitrova D, Balabanova V, Stoev S. Molecular networking-assisted flavonoid profile of Gypsophila glomerata extract in relation to its protective effects on carbon tetrachloride-induced hepatorenal damage in rats. Acta Pharm. 2022;72(1):59-77. doi:10.2478/acph-2022-0009.

13.      Rabbi F, Zada A, Nisar A. Larvicidal, leishmanicidal, insecticidal and anthelmintic effects of Sterculia diversifolia stem bark and leaf. Bangladesh J Pharmacol. 2020;15(1):32-8. doi:10.3329/bjp.v15i1.4323.

14.      Kim J, Li S, Zhang S, Wang J. Plant-derived exosome-like nanoparticles and their therapeutic activities. Asian J Pharm Sci. 2021;17(1):53-69. doi:10.1016/j.ajps.2021.05.006

15.      Rezig L, Chouaibi M, Meddeb W, Msaada K, Hamdi S. Chemical composition and bioactive compounds of Cucurbitaceae seeds: Potential sources for new trends of plant oils. Process Saf Enviro Prot. 2019;127:73-81. doi:10.1016/j.psep.2019.05.005.

16.      Qian OY, Harith S, Shahril MR, Shahidan N. Bioactive compounds in Cucumis melo L and Beneficial health effects: a scoping review. Malays Appl Biol. 2019;48(4):1-13.

17.      Fundo JF, Miller FA, Garcia E, Santos JR, Silva CLM, Brandão TRS. Physicochemical characteristics, bioactive compounds, and antioxidant activity in juice, pulp, peel, and seeds of Cantaloupe melon. J Food Meas Charact. 2018;12(1):292-300. doi:10.1007/s11694-017-9640-0.

18.      Palmitessa OD, Durante M, Somma A, Mita G, D’Imperio M, Serio F, et al. Nutraceutical Profile of “Carosello” (Cucumis melo L.) Grown in an Out-of-Season Cycle under LEDs. Antioxidants. 2022;11(4):777. doi:10.3390/antiox11040777. 

19.      Manchali S, Chidambara Murthy KN, Patil BS. Nutritional composition and health benefits of various botanical types of melon (Cucumis melo L.). Plants. 2021;10(9):1755. doi:10.3390/plants10091755.

20.      Derradji - Benmeziane F, Djamai R, Cadot Y. Antioxidant capacity, total phenolics, carotenoids, and vitamin c contents of five varieties of table grape from Algeria and their correlations. Int Sci Vigne Vin. 2014;48(2):153-62. doi:10.20870/oeno-one.2014.48.2.1564.

21.      Gholkar AA, Nikam YP, Zambare KK, Reddy KV, Ghorpade AD. Potential anticoagulant herbal plants: A Review. Asian J Res Pharm Sci. 2020;10(1):51-5. doi:10.5958/2231-5659.2020.00010.7.

22.      Hmidani A, Bouhlali EDT, Khouya T, Ramchoun M, Filali-Zegzouti Y, Alem C, et al. Antioxidant, anti-inflammatory and anticoagulant activities of three Thymus species grown in southeastern Morocco. Future J Pharm Sci. 2019;5(1):4. doi:10.1186/s43094-019-0005-x.

23.      Ho TC, Kiddane AT, Sivagnanam SP, Park JS, Cho YJ, Getachew AT, et al. Green extraction of polyphenolic-polysaccharide conjugates from Pseuderanthemum palatiferum (Nees) Radlk.: Chemical profile and anticoagulant activity. Int J Biol Macromol. 2020;157:484-93. doi:10.1016/j.ijbiomac.2020.04.113.

24.      Hu C, Li HX, Zhang MT, Liu LF. Structure characterization and anticoagulant activity of a novel polysaccharide from Leonurus artemisia (Laur.). RSC Adv. 2020;10(4):2254-66. doi:10.1039/c9ra10853j.

25.      Hmidani A, Bouhlali EDT, Khouya T, Ramchoun M, Filali-zegzouti Y, Benlyas M, et al. Effect of extraction methods on antioxidant and anticoagulant activities of Thymus atlanticus aerial part. Sci Afr. 2019;5:e00143. doi:10.1016/j.sciaf.2019.e00143.

26.      Alabdallat NG, Bin Dukhyil AAA. In vitro anticoagulant effect of methanolic extracts of Artemisia herba-alba, Achillea fragrantissima and Citrullus colocynthis grown in Saudi Arabia. Indian J Tradit Knowl. 2020;20(2):344-50. Available from: http://nopr.niscair.res.in/handle/123456789/57215/

27.      Khan A, Muhamad NA, Ismail H, Nasir A, Khalil AAK, Anwar Y, et al. Potential nutraceutical benefits of in vivo grown saffron (Crocus sativus L.) as analgesic, anti-inflammatory, anticoagulant, and antidepressant in mice. Plants. 2020;9(11):1414. doi:10.3390/plants9111414