Archive \ Volume.13 2022 Issue 1

Grapefruit Seed Extracts’ Antibacterial and Antiviral Activity: Anti-Severe Acute Respiratory Syndrome Coronavirus 2 Impact

Afnan Hassan Saaty

The Corona pandemic has affected the entire world. It caused a fatal respiratory illness and threatened public safety and human health. Scientists scrambled to detect an operative drug to counter the SARS-CoV-2 (severe acute respiratory syndrome Coronavirus 2). The hunt for a nutritional supplement to treat the Coronavirus has occupied a large area of scientific inquiry. Grapefruit (GF) (Rutaceae family) is a subtropical fruit, it has potent bioactive properties. Natural grapefruit seed extract (GFSE) has been revealed to exhibit beneficial therapeutic effects. The purpose of this review was to compile published research studies demonstrating antibacterial, antifungal, and antiviral activities of GFSE and its bioactive components, besides their ability to inhibit SARS-CoV-2 activity. The GFSE has a high growth inhibition against gram-positive bacteria (Enterococcus spp. and Staphylococcus spp) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Besides, it showed an inhibition zone against Multidrug-resistant (MDR) bacteria. The antiviral activity of GFSE nasal spray against the new Coronavirus has been recognized. The anti-Coronavirus capabilities of GFSE's main components, such as naringenin, resveratrol, limonoids, and hesperidin, have also been verified. In conclusion, additional in vivo and clinical research studies are warranted to endorse the impact of GFSE (spray or syrup) against SARS-CoV-2.

How to cite:
Saaty A H. Grapefruit Seed Extracts’ Antibacterial and Antiviral Activity: Anti-Severe Acute Respiratory Syndrome Coronavirus 2 Impact. Arch. Pharm. Pract. 2022;13(1):68-73.
Saaty, A. H. (2022). Grapefruit Seed Extracts’ Antibacterial and Antiviral Activity: Anti-Severe Acute Respiratory Syndrome Coronavirus 2 Impact. Archives Of Pharmacy Practice, 13(1),68-73.

Download Citation

1.        Hu B, Guo H, Zhou P, Shi Z. Characteristics of SARS- CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141-54.

2.        Go C, Pandav K, Sanchez-Gonzalez M, Ferrer G. Potential role of Xylitol plus grapefruit seed extract nasal spray solution in COVID-19: Case Series. Cureus. 2020;12(11):e11315.

3.        Kumar Y, Singh H, Patel C. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. J Infect Public Health. 2020;13(9):1210-23.

4.        Ghildiyal R., Prakash V, Chaudhary VK, Gupta V, Gabrani R. Phytochemicals as antiviral agents: Recent updates. Plant-Derived Bioactives. 2020;5:279-95.

5.        Mani JS, Johnson JB, Steel JC, Broszczak DA, Neilsen PM, Walsh KB, et al. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res. 2020;284:197989.

6.        Ahmed S, Rattanpal HS, Singh G. Diversity assessment of grapefruit (Citrus × paradisi) and tangelo (citrus × tangelo) under Indian conditions using physico-chemical parameters and ssr markers. Appl Ecol Environ Res. 2018;16(5):5343-58.

7.        Khalil MNA, Farghal HH, Farag MA. Outgoing and potential trends of composition, health benefits, juice production and waste management of the multi-faceted Grapefruit CitrusΧ paradisi: A comprehensive review for maximizing its value. Crit Rev Food Sci Nutr. 2022;62(4):935-56.

8.        Gupta V, Kohli K, Ghaiye P, Bansal P, Lather A. Pharmacological potentials of citrus paradisi- An overview. Int J Phytothear Res. 2011;1(1):8-17.

9.        Cvetnić Z, Vladimir-Knežević S. Antimicrobial activity of grapefruit seed and pulp ethanolic extract. Acta Pharm. 2004;54(3):243-50.

10.      Saric B, Tomic N, Kalajdzic A, Pojskic N, Pojskic L. In silico analysis of selected components of grapefruit seed extract against SARS-CoV-2 main protease. Eurobiotech J. 2021;5(s1):5-12.

11.      Silver HJ, Dietrich MS, Niswender KD. Effects of grapefruit, grapefruit juice and water preloads on energy balance, weight loss, body composition, and cardio metabolic risk in free-living obese adults. Nutri Metabol. 2011;8(1):1-1.

12.      Reagor L, Gusman J, McCoy L, Carino E, Heggers JP. The effectiveness of processed grapefruit-seed extract as an antibacterial agent: I. An in vitro agar assay. J Altern Complement Med. 2002;8(3):325-32.

13.      Tohumunun G, Aktivitesi A, Çiçek Polat D, Eryilmaz M, Akalin K, Coşkun M. Antimicrobial activity of grapefruit seed. Hacettepe Univ J Fac Pharm. 2018;38(1):1-3.

14.      Gorinstein S, Leontowicz H, Leontowicz M, Krzeminski R, Gralak M, Delgado-Licon E, et al. Changes in plasma lipid and antioxidant activity in rats as a result of naringin and red grapefruit supplementation. J Agric Food Chem. 2005;53(8):3223-8.

15.      Faleye FJ, Ao O. Antibacterial and antioxidant activities of Citrus paradise (Grapefruit Seed) extracts. J Pharm Sci Innov. 2012;1(3):63-6.

16.      O’Mathúna D. Grapefruit seed extract as an antimicrobial agent. Alternative Med Alert. 2009;12:73-6.

17.      Ganzera M, Aberham A, Stuppner H. Development and validation of an HPLC/UV/MS method for simultaneous determination of 18 preservatives in grapefruit seed extract. J Agric Food Chem. 2006;54(11):3768-72.

18.      Kim T, Kim J, Oh S. Grapefruit seed extract as a natural food antimicrobial: A review. Food Bioproc Tech. 2021;14(4):626-33.

19.      Komura M, Suzuki M, Sangsriratanakul N, Ito M, Takahashi S, Alam M, et al. Inhibitory effect of grapefruit seed extract (GSE) on avian pathogens. J Veterinary Med Sci. 2019;81:466.

20.      Gandra S, Tseng KK, Arora A, Bhowmik B, Robinson ML, Panigrahi B, et al. The mortality burden of multidrug-resistant pathogens in India: A retrospective, observational study. Clin Infect Dis. 2019;69(4):563-70.

21.      Ionescu G, Kiehl R, Wichmann-Kunz F, Williams C, Bauml L, Levine S. Oral citrus seed extract in atopic eczema: In vitro and in vivo studies on intestinal microflora. J Orthomolecular Med. 1990;5:155-7.

22.      Krajewska-Kułak E, Lukaszuk C, Niczyporuk W. Effects of 33% grapefruit extract on the growth of the yeast--like fungi, dermatopytes and moulds. Wiad Parazytol. 2001;47(4):845-9.

23.      Vereshchagin AN, Frolov NA, Egorova KS, Seitkalieva MM, Ananikov VP. Quaternary ammonium compounds (QACs) and Ionic liquids (ILs) as biocides: from simple antiseptics to tunable antimicrobials. Int J Mol Sci. 2021;22(13):6793.

24.      Brorson O, Brorson SH. Grapefruit seed extract is a powerful in vitro agent against motile and cystic forms of Borrelia burgdorferi sensu lato. Infect. 2007;35(3):206-8.

25.      Al-Âni W, Tawfik N, Shehab E. Antimicrobial activity of grapefruit seeds extracts (In vitro study). Al-Rafidain Dent J. 2011;11(2):341-5.

26.      Choi J, Lee Y, Ha Y, Seo H, Kim Y, Park S, et al. Antibacterial effect of grapefruit seed extract (GSE) on Makgeolli-brewing microorganisms and its application in the preservation of fresh Makgeolli. J Food Sci. 2014;79(6):M1159-67.

27.      Haskaraca G, Juneja V, Mukhopadhyay S, Kolsarici N. The effects of grapefruit seed extract on the thermal inactivation of Listeria monocytogenes in sous-vide processed döner kebabs. Food Control. 2019;95:71-6.

28.      Han H, Kwak J, Jang T, Knowles J, Kim H, Lee H, et al. Grapefruit seed extract as a natural derived antibacterial substance against multidrug-resistant bacteria. Antibiotics. 2021;10(1):1-13.

29.      Ignacio C, Thai D. Comparative analysis of antifungal activity of natural remedies versus miconazole nitate salt against Candida albicans. Biological Sciences Dept. California Polytechnical State Institute. 2005.

30.      Kang S, Guo Y, Rao J, Jin H, You H, Ji G. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus plantarum pH3A, monolaurin, and grapefruit seed extract. Food Funct. 2021;12(211):11024-32.

31.      Chinsembu KC, Hedimbi M. Ethnomedicinal plants and other natural products with anti-HIV active compounds and their putative modes of action. Int J Biotechnol Mol Biol Res. 2010;1(6):74-91.

32.      Thammakarn C, Satoh K, Suguro A, Hakim H, Ruenphet S, Takehara K. Inactivation of avian influenza virus, newcastle disease virus and goose parvovirus using solution of nano-sized scallop shell powder. J Vet Med Sci. 2014;76:1277-80.

33.      Guan J, Chan M, Brooks BW, Rohonczy L. Inactivation of infectious bursal disease and Newcastle disease viruses at temperatures below 0C using chemical disinfectants. Avian Dis. 2014;58(2):249-54.

34.      Gualdani R, Cavalluzzi M, Lentini G, Habtemariam S. The chemistry and pharmacology of citrus limonoids. Molecules. 2016;21(11):1530.

35.      Cha C, Park E, Jung J, Yoo C, Kim S, Lee H. Virucidal efficacy against Avian influenza virus of a disinfectant spray containing grapefruit seed extracts, citric acid, malic acid and benzalkonium chloride. J Environ Health Sci. 2016;42(4):266-73.

36.      Su X, D’Souza D. Grape seed extract for control of human enteric viruses. Appl Environ Microbiol. 2011;77(12):3982-7.

37.      Ferrer G, Betancourt A, Go C, Vazquez H, Westover J, Cagno V, et al. A nasal spray solution of grapefruit seed extract plus xylitol displays virucidal activity against SARS-Cov-2 in vitro. BioRxiv. 2020;34211.

38.      Magurano F, Sucameli M, Picone P, Micucci M, Baggieri M, Marchi A, et al. Antioxidant Activity of Citrus Limonoids and Investigation of Their Virucidal Potential against SARS-CoV-2 in Cellular Models. Antioxidant. 2021;10(11):1794.

39.      Frabasile S, Koishi A, Kuczera D, Silveira G, Verri W, Dos Santos C, et al. The citrus flavanone naringenin impairs dengue virus replication in human cells. Sci Rep. 2017;7(1):41864.

40.      Cataneo A, Kuczera D, Koishi A, Zanluca C, Silveira G, Arruda T, et al. The citrus flavonoid naringenin impairs the in vitro infection of human cells by Zika virus. Sci Rep. 2019;9(1):16348.

41.      Silva C, Salatino A, Motta L, Negri G, Salatino M. Chemical characterization, antioxidant and anti-HIV activities of a Brazilian propolis from Ceará state. Rev Bras Farmacogn. 2019;29:309-18.

42.      Gonçalves D, Lima C, Ferreira P, Costa P, Costa A, Figueiredo W, et al. Orange juice as dietary source of antioxidants for patients with hepatitis C under antiviral therapy. Taylor Francis. 2017;61(1):1296675.

43.      Salehi B, Fokou P, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, et al. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceutical. 2019;12(1):11.

44.      Tahir ul Qamar M, Alqahtani S, Alamri M, Chen L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020;10(4):313-9.

45.      Jo S, Kim S, Shin D, Kim M. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem. 2020;35(1):145-51.

46.      Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S. Potential inhibitor of COVID-19 main protease (m pro) from several medicinal plant compounds by molecular docking study. Preprints. 2020;30226:1-14.

47.      Alberca R, Teixeira F, Beserra D, de Oliveira E, Andrade M, Pietrobon AJ, et al. Perspective: The potential effects of naringenin in COVID-19. Front Immunol. 2020;11:2477.

48.      Shen D, Wang X, Xu H. Pairing phosphoinositides with calcium ions in endolysosomal dynamics: Phosphoinositides control the direction and specificity of membrane trafficking by regulating the activity of calcium channels in the endolysosomes. BioEssays. 2011;33(6):448-57.

49.      Gunaratne G, Yang Y, Li F, Walseth T, Marchant J. NAADP-dependent Ca2+ signaling regulates Middle East respiratory syndrome-coronavirus Pseudovirus translocation through the endolysosomal system. Cell Calcium. 2018;75:30-41.

50.      Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: molecular mechanisms. World J Gastroenterol. 2018;24(16):1679-707.

51.      Agrawal PK, Agrawal C, Blunden G. Naringenin as a possible candidate against SARS-CoV-2 infection and in the pathogenesisof COVID-19. Nat Prod Commun. 2021;16(12):1-16.

52.      Giordo R, Zinellu A, Eid AH, Pintus G. Therapeutic potential of resveratrol in COVID-19-associated hemostatic disorders. Molecules. 2021;26(4):856.

53.      Cao S, Realegeno S, Pant A, Satheshkumar P, Yang Z. Suppression of poxvirus replication by resveratrol. Front Microbiol. 2017;8:2196.

54.      Lin S, Ho C, Chuo W, Li S, Wang T, Lin C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis. 2017;17(1):1-0.

55.      Mohd A, Zainal N, Tan K, AbuBakar S. Resveratrol affects Zika virus replication in vitro. Sci Rep. 2019;9(1):14336.

56.      Huang H, Liao D, Zhou G, Zhu Z, Cui Y, Pu R. Antiviral activities of resveratrol against rotavirus in vitro and in vivo. Phytomedicine. 2020;77:153230.

57.      Pasquereau S, Nehme Z, Haidar AS, Daouad F, Van Assche J, Wallet C, et al. Resveratrol inhibits HCoV-229E and SARS-CoV-2 coronavirus replication in vitro. Viruses. 2021;13(2):354.

58.      Montoya C, González L, Pulido S, Atehortúa L, Robledo S. Identification and quantification of limonoid aglycones content of Citrus seeds. Rev Bras Farmacogn. 2019;29:710-4.

59.      Vardhan S, Sahoo S. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Comput Biol Med. 2020;124:103936.

60.      Giofrè S, Napoli E, Iraci N, Speciale A, Cimino F, Muscarà C, et al. Interaction of selected terpenoids with two SARS-CoV-2 key therapeutic targets: An in silico study through molecular docking and dynamics simulations. Comput Biol Med. 2021;134:104538.

61.      Saini RK, Ranjit A, Sharma K, Prasad P, Shang X, Gowda KG, et al. Bioactive compounds of citrus fruits: A review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants (Basel). 2022;11(2):239.

62.      Cheng F, Huynh T, Yang C, Hu D, Shen Y, Tu C, et al. Hesperidin is a potential inhibitor against SARS-CoV-2 infection. Nutrients. 2021;13(8):2800.