Archive \ Volume.12 2021 Issue 3

Larvicidal Effects of Carbon Nanotubes Loaded with Selected Marine 'Sponges' Extracts

, , , , , , ,

Abstract

Recently, the use of eco-friendly and biodegradable insecticides has gained great attention. The present study was concerned to evaluate the larvicidal potential of the extracts of the Red Sea sponges Xestospongia testudinaria and Amphimedon chloros and biogenic carbon nanotubes (CNTs) against Aedes aegypti (Diptera: Culicidae). The third instar larvae of Ae. aegypti was used to test the insecticidal activity of the methanolic extract of X. testudinaria and A. chloros. The results showed that the tested concentrations (62.5, 125, 250, and 500 ppm) of both extracts possess high and moderate larvicidal effects after 48 h of exposure. The methanolic extract of A. chloros with CNTs showed 96 % (LC50 = 15.569 ppm) mortality after 24 h of exposure. While the A. chloros, extract without CNTs, the larval mortality was 99 % (LC50 = 65.77 ppm) after 48 h of exposure. These results suggested that the synthesized biogenic CNTs can be used as an ideal eco-friendly approach for controlling A. aegypti.



How to cite:
Vancouver
Alkenani NA, Basabreen MA, Shaala LA, Alshaeri MA, Mahyoub JA, Ullah I, et al. Larvicidal Effects of Carbon Nanotubes Loaded with Selected Marine 'Sponges' Extracts. Arch Pharm Pract. 2021;12(3):100-4. https://doi.org/10.51847/bLTtjUuOrO
APA
Alkenani, N. A., Basabreen, M. A., Shaala, L. A., Alshaeri, M. A., Mahyoub, J. A., Ullah, I., Algamdi, K. M., & Youssef, D. T. (2021). Larvicidal Effects of Carbon Nanotubes Loaded with Selected Marine 'Sponges' Extracts. Archives of Pharmacy Practice, 12(3), 100-104. https://doi.org/10.51847/bLTtjUuOrO

Download Citation
References

1.        Rathy MC, Sajith U, Harilal CC. Plant diversity for mosquito control: A preliminary study. Int J Mosq Res. 2015;2(1):29-33.

2.        Elkhidr ME, Abdo I, Madani M, Abdelghani S, Waggiallah HA, Eltayeb LB. Toxicity of Water Extract of Acacia Nilotica Fruits against Mosquito Larvae: An Experimental Study. Entomol Appl Sci Lett. 2020;20(2):0-30.

3.        Pape T, Blagoderov V, Mostovski MB. Order Diptera Linnaeus, 1758. In: Zhang, Z.-Q.(Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa. 2011;3148(1):222-9.

4.        Ahmed A, Mohamed AN. Introduction to medical and veterinary insectology, King Saud University, Saudi Arabia. 2016.

5.        Supadmi W, Perwitasari DA, Abdulah R, Suwantika AA. Correlation of rainfall and socio-economic with incidence dengue in Jakarta, Indonesia. J Adv Pharm Educ Res. 2019;9(1):134-42.

6.        Mulyaningsih B, Umniyati SR, Phillabertha PS, Irawan RP, Romulo MA. Biochemical detection and characterization of insecticide resistance in dengue vector Aedes aegypti (L.) from areas around universitas gadjah mada campus, Yogyakarta, Indonesia. Southeast Asian J Trop Med Public Health. 2019;50(1):47-54.

7.        Pavela R. Larvicidal effects of some Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae). Parasitol Res. 2009;105(3):887-92.

8.        Pavela R. Larvicidal effects of various Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae). Parasitol Res. 2008;102(3):555-9.

9.        Reegan AD, Kinsalin AV, Paulraj MG, Ignacimuthu S. Larvicidal, ovicidal, and repellent activities of marine sponge Cliona celata (Grant) extracts against Culex quinquefasciatus Say and Aedes aegypti L.(Diptera: Culicidae). Int Sch Res Notices. 2013;2013.

10.      Sharma A, Tilak R, Sisodia N. Evaluation of bioactivity of aqueous extracts of Bougainvillea spectabilis, Saraca asoca, and Chenopodium album against immature forms of Aedes aegypti. Med J Armed Forces India. 2019;75(3):308-11.

11.      World Health Organization. Guidelines on the management of public health pesticides. Document WHO/CDS/WHOPES/2003.7. Geneva, Switzerland, 2003.

12.      Usta J, Kreydiyyeh S, Bajakian K, Nakkash-Chmaisse H. In vitro effect of eugenol and cinnamaldehyde on membrane potential and respiratory chain complexes in isolated rat liver mitochondria. Food Chem Toxicol. 2002;40(7):935-40.

13.      El-Naggar HA, Hasaballah AI. Acute larvicidal toxicity and repellency effect of octopus cyanea crude extracts against the filariasis vector, culex pipiens. J Egypt Soc Parasitol. 2018;48(3):721-8.

14.      Khare R. Carbon nanotube based composites-a review. J Miner Mater Charact Eng. 2005;4(01):31.

15.      Martínez A, Galeano E, Cadavid J, Miranda Y, Llano J, Montalvo K. Insecticide action of ethanol extracts of sponges from Uraba Gulf on Aedes aegypti and Culex quinquefasciatus larvae. Vitae. 2007;14(2):90-4.

16.      Annie Selva Sonia G, Lipton AP. Mosquito Larvicidal activity of marine sponge metabolites. Glob J Pharmacol. 2012;6(1):1-3.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.