Archive \ Volume.14 2023 Issue 4

Mycotoxins Extracted from Exophytic and Endophytic Fungi Isolated from Catharanthus roseus Plant and Their Toxicity Effect

, , ,

Abstract

Secondary metabolites such as mycotoxins can be produced by fungi on agricultural commodities in the field. These fungi can colonize medicinal plants, such as Catharanthus roseus. On the PDA medium, 18 isolates of exophytic and endophytic fungi isolated from C. roseus, including Aspergillus, Penicillium, and Talaromyces species, were tested for mycotoxin production. Thin layer chromatography indicated the formation of six mycotoxins from six isolates, including aflatoxin G1, aflatoxin B1, sterigmatocystin, citrinin, aflatoxin B2, and penicillic acid. To measure the impact of C. roseus leaf extract on the generation of fungal mycotoxin, toxic isolates were cultivated on a PDA medium supplemented with the leaf extract. It was discovered that enriched PDA media could enhance the formation of certain mycotoxins. Toxicity tests were performed on brine shrimp larvae Artemia salina for fungal mycotoxin extraction and C. roseus leaf extraction. Selected fungal extracts at 10 μg/ml were also harmful to brine shrimp larvae, while leaf extracts at 6.25-200 μg/ml were very toxic.


Downloads: 23
Views: 53

How to cite:
Vancouver
Alsubaie S, Bokhari F, Hassoubah S, Najjar A. Mycotoxins Extracted from Exophytic and Endophytic Fungi Isolated from Catharanthus roseus Plant and Their Toxicity Effect. Arch Pharm Pract. 2023;14(4):160-8. https://doi.org/10.51847/EVSwmc9NCd
APA
Alsubaie, S., Bokhari, F., Hassoubah, S., & Najjar, A. (2023). Mycotoxins Extracted from Exophytic and Endophytic Fungi Isolated from Catharanthus roseus Plant and Their Toxicity Effect. Archives of Pharmacy Practice, 14(4), 160-168. https://doi.org/10.51847/EVSwmc9NCd

Download Citation
References
  1. Galea-Holhoș LB, Delcea C, Siserman CV, Ciocan V. Age estimation of human remains using the dental system: A review. Ann Dent Spec. 2023;11(3):14-8.
  2. Tran AD, Do LH, Lai LTT. The Impact of Monetary Policy on Environmental Pollution in A Transition Country: The Case of Vietnam. J Organ Behav Res. 2023;8(2):54-65.
  3. Krska R, Schubert-Ullrich P, Molinelli A, Sulyok M, MacDonald S, Crews C et al. Mycotoxin analysis: An update. Food Addit Contam. 2008;25(2):152-63.
  4. Moretti A, Pascale M, Logrieco AF. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci Technol. 2019;84(19):38-40.
  5. Trucksess MW, Scott PM. Mycotoxins in botanicals and dried fruits: A review. Food Addit Contam. 2008;25(2):181-92.
  6. Mustafa NR, Verpoorte R. Phenolic compounds in Catharanthus roseus. Phytochem Rev. 2007;6(7):243-58.
  7. Nayak J, Mishra JN, Verma NK. A brief study on abscess: A review. Int J Res Pharm Pharm Sci. 2017;3(5):138-43.
  8. Filtenborg O, JC F. A simple screening method for toxigenic moulds in pure cultures. Pascal and Francis bibliographic database. 1980;13(3):128-30.
  9. Lima-Filho JV, De Aguiar Cordeiro R. In vitro and in vivo antibacterial and antifungal screening of natural plant products: Prospective standardization of basic methods. Springer New York. 2013;17(13):281-91.
  10. Bokhari FM. Studies on mycotoxin production on moulds in stored cereals and pules. PhD thesis, Heriot-WATT University, Edinburgh. 1993.
  11. Samson RA, Hoekstra ES, Frisvad JC. Introduction to food-and airborne fungi, (7th edition), Centraalbureau voor Schimmelcultures Netherlands. 2004.
  12. Sarker YA, Hasan MM, Paul TK, Rashid SZ, Alam MN, Sikder MH et al. Screening of antibiotic residues in chicken meat in Bangladesh by thin layer chromatography. J Adv Vet Anim Res. 2018;5(2):140-5.
  13. Vijayan SR, Santhiyagu P, Singamuthu M, Kumari Ahila N, Jayaraman R, Ethiraj K et al. Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. Sci World J. 2014;14(3):1-0.
  14. Harwig J, Scott PM. Brine shrimp (Artemia salina L.) larvae as a screening system for fungal toxins. Appl Microbiol. 1971;21(6):1011-6.
  15. Fauziah F, Maulinasari M, Harnelly E, Ismail YS, Fitri L. Toxicity test of rose periwinkle (Catharanthus roseus) leaves endophytic bacteria using Brine Shrimp Lethality Test (BSLT) method. Biodivers J Biol Divers. 2022;23(1):171-7.
  16. Agha HM, Radzun KA, Sidik NJ, Jawad AH. Callus induction of fenugreek trigonella foenum-graecum via auxin combined with cytokinins hormones, and assessment of toxicity via brine shrimp assay. J Asian Sci Res. 2022;12(1):12-27.
  17. Fiore E, Tessari R, Morgante M, Gianesella M, Badon T, Bedin S, et al et al. Identification of plasma fatty acids in four lipid classes to understand energy metabolism at different levels of ketonemia in dairy cows using thin-layer chromatography and gas chromatographic techniques (TLC-GC). Animals. 2020;10(4):1-20.
  18. Rabie CJ, Steyn M, Van Schalkwyk GC. New species of Aspergillus producing sterigmatocystin. Appl Environ Microbiol. 1977;33(5):1023-5.
  19. Al-warshan SH, Hadi ST, Sultan LJ. Efficiency of plant extracts on Aspergillus growth and aflatoxin B1 production in Zea mays. Pak J Bot. 2023;55(4):1545-50.
  20. Keller NP, Watanabe CM, Kelkar HS, Adams TH, Townsend CA. Requirement of monooxygenase-mediated steps for sterigmatocystin biosynthesis by Aspergillus nidulans. Appl Environ Microbiol. 2000;66(1):359-62.
  21. Lešić T, Zadravec M, Zdolec N, Vulić A, Perković I, Škrivanko M, et al. Mycobiota and mycotoxin contamination of traditional and industrial dry-fermented Sausage Kulen. Toxins. 2021;13(11):1-12.
  22. Palumbo JD, O’Keeffe TL, Mahoney NE. Inhibition of ochratoxin A production and growth of Aspergillus species by phenolic antioxidant compounds. Mycopathologia. 2007;164(7):241-8.
  23. Devi P, D'Souza L, Kamat T, Rodrigues C, Naik CG. Batch culture fermentation of Penicillium chrysogenum and a report on the isolation, purification, identification, and antibiotic activity of citrinin. Indian J Mar Sci. 2009;38(1):38-44.
  24. Ahmad B, Ashiq S, Hussain A, Bashir S, Hussain M. Evaluation of mycotoxins, mycobiota, and toxigenic fungi in selected medicinal plants of Khyber Pakhtunkhwa, Pakistan. Fungal Biol. 2014;118(10):776-84.
  25. Frisvad JC, Hubka V, Ezekiel CN, Hong S, Novßkovß A, Chen AJ. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins, and other mycotoxins. Stud Mycol. 2019;93(1):1-63.
  26. Padhi L, Mohanta YK, Panda SK. Endophytic fungi with great promises: A review. J Adv Pharm Educ Res. 2013;3(3):152-70.
  27. Saini A, Parkash V, Kumar V, Gaur A, Chirag H. Detection of mycotoxins from some micro and macro endophytic ascomycetes fungi. Int J Environ Agric Biotechnol. 2021;6(3):216-25.
  28. Rodriguez RJ, White Jr JF, Arnold AE, Redman AR. Fungal endophytes: Diversity and functional roles. New Phytol. 2009;182(2):314-30.
  29. Zainudin N, Perumal N. Mycotoxins production by Fusarium and Aspergillus species isolated from cornmeal. Int J Agric Biol. 2015;17(3):440-8.
  30. Dong T, Qiao S, Xu J, Shi J, Qiu J, Ma G. Effect of Abiotic Conditions on Growth, Mycotoxin Production, and Gene Expression by Fusarium fujikuroi Species Complex Strains from Maize. Toxins. 2023;15(4):1-23.
  31. Zhang Z, Yang L, Wenjing X, Li S, Qian D, Yangzhou W, et al. Influence of genetic diversity of seventeen Beauveria bassiana isolates from different hosts on virulence by comparative genomics. BioMed Cent Genom. 2020;21(1):1-12.
  32. Tsuge T, Harimoto Y, Akimitsu K, Ohtani K, Kodama M, Akagi Y, et al. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. Fed Eur Microbiol Soc. 2013;37(1):44-66.
  33. Schroeder HW, Cole RJ, Hein Jr H, Kirksey JW et al. Tremorgenic mycotoxins from Aspergillus caespitosus. Appl Microbiol. 1975;29(6):857-8.
  34. Astoreca A, Vaamonde G, Dalcero A, Marin S, Ramos A et al. Abiotic factors, and their interactions influence on the co-production of aflatoxin B1 and cyclopiazonic acid by Aspergillus flavus isolated from corn. Food Microbiol. 2014;38(4):276-83.
  35. Bíro D, Juracek M, Kacaniova M, Simko M, Gálik B, Michálková J, et al. Occurrence of microscopic fungi and mycotoxins in conserved high moisture corn from Slovakia. Ann Agric Environ Med. 2009;16(2):227-32.
  36. Batista LR, Chalfoun SM, Prado G, Schwan RF, Wheals AE. Toxigenic fungi associated with processed (green) coffee beans (Coffea arabica L.). Int J Food Microbiol. 2003;85(3):293-300.
  37. Akbar A, Medina A, Magan N. Efficacy of different caffeine concentrations on growth and ochratoxin A production by Aspergillus species. Lett Appl Microbiol. 2016;63(1):25-9.
  38. Walters DR, Bingham IJ. Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Ann Appl Biol. 2007;151(3):307-24.
  39. Kure CF, Skaar I. The fungal problem in cheese industry. Curr Opin Food Sci. 2019;29(9):14-9.
  40. Yassein SN. Comparative study of pathogenicity between Aspergillus fumigatus and Penicillium chrysogenum in mice. Iraqi J Agric Sci. 2020;51(2):168-75.
  41. Scott PM, Harwig J, Blanchfield BJ. Screening Fusarium strains isolated from overwintered Canadian grains for trichothecenes. Mycopathologia. 1980;72(3):175-80.
  42. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DJ, McLaughlin JL et al. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica. 1982;45(05):31-4.
  43. Anderson JE, Goetz CM, McLaughlin JL, Suffness M. A blind comparison of simple bench‐top bioassays and human tumor cell cytotoxicities as antitumor prescreens. Phytochem Anal. 1991;2(3):107-11.
  44. Matata DZ, Ngassapa OD, Machumi F, Moshi MJ. Screening of plants used as traditional anticancer remedies in mkuranga and same districts, Tanzania, using brine shrimp toxicity bioassay. Evid-Based Complementary Altern Med. 2018;1(18):1-16.
  45. Kabubii ZN. Phytochemical composition, cytotoxicity, and toxicological studies of Rosmarinus officinalis, Catharanthus roseus, and Myrsine africana crude extract. PhD thesis, University of Nairobi, Nairobi. 2015.
  46. Fernández-Pérez F, Almagro L, Pedreño MA, Gomez Ros LV. Synergistic and cytotoxic action of indole alkaloids produced from elicited cell cultures of Catharanthus roseus. Pharm Biol. 2013;51(3):304-10.
  47. Nagarajan S. A Review of Potential Hepatoprotective Compounds from Medicinal Plants. Pharmacophore. 2022;13(4):8-22.

 

 

 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.