Archive \ Volume.14 2023 Issue 2

New Acetamide Derivatives of the COX-II Inhibitors-A Brief Review

Karam S. Atrushi, Dana M. Ameen, Faris T. Abachi

The most traditional and popular agents are non-steroidal anti-inflammatory drugs (NSAIDs). However, due to their side effects on different organs. In this review, several compounds created as acetamide derivatives to maintain their anti-inflammatory properties, selective COX-II inhibitors, are discussed. Numerous literature reviews have highlighted the significance of these anti-inflammatory heterocyclic compounds in treatments, taking into consideration the significance of this pharmacological class. Cyclooxygenase-II (COX-II) inhibitors can be used in a wide variety of applications thanks to the prodrug method. It plays a big part in drug development. Many researchers have created different prodrugs using acetamide molecules to adjust pharmacokinetic parameters, enhance organoleptic qualities, or increase chemical properties. A huge quantity of amide derivatives belonging to different classes of compounds exhibit cyclooxygenase-II inhibitors and mainly to treat arthritis, pain, menstrual camps, and colonic polyps, they used for relief of pain, fever, swelling, and tenderness. Finally, the nanoparticles of cyclooxygenase (II) inhibitors were used for improving the efficacy.

Downloads: 22
Views: 30

How to cite:
Atrushi KS, Ameen DM, Abachi FT. New Acetamide Derivatives of the COX-II Inhibitors-A Brief Review. Arch Pharm Pract. 2023;14(2):59-65.
Atrushi, K. S., Ameen, D. M., & Abachi, F. T. (2023). New Acetamide Derivatives of the COX-II Inhibitors-A Brief Review. Archives of Pharmacy Practice, 14(2), 59-65.

Download Citation

1.        Saund D, Kotecha S, Rout J, Dietrich T. Non‐resolving periapical inflammation: a malignant deception. Int Endod J. 2010;43(1):84-90. doi:10.1111/j.1365-2591.2009.01644.x

2.        Lin MH, Wu WT, Chen YC, Lu CH, Su SC, Kuo FC, et al. Association between Non-Steroidal Anti-Inflammatory Drugs Use and the Risk of Type 2 Diabetes Mellitus: A Nationwide Retrospective Cohort Study. J Clin Med. 2022;11(11):3186. doi:10.3390/jcm11113186

3.        Araújo JR, Tomas J, Brenner C, Sansonetti PJ. Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie. 2017;141:97-106. doi:10.1016/j.biochi.2017.05.019

4.        Jakiela B, Soja J, Sladek K, Przybyszowski M, Plutecka H, Gielicz A, et al. Heterogeneity of lower airway inflammation in patients with NSAID-exacerbated respiratory disease. J Allergy Clin Immunol. 2021;147(4):1269-80. doi:10.1016/j.jaci.2020.08.007

5.        Simon TG, Henson J, Osganian S, Masia R, Chan AT, Chung RT, et al. Daily aspirin use associated with reduced risk for fibrosis progression in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2019;17(13):2776-84. doi:10.1016/j.cgh.2019.04.061

6.        Oliveira IM, Borges A, Borges F, Simões M. Repurposing ibuprofen to control Staphylococcus aureus biofilms. Eur J Med Chem. 2019;166:197-205. doi:10.1016/j.ejmech.2019.01.046

7.        Fu WY, Wang X, Ip NY. Targeting neuroinflammation as a therapeutic strategy for Alzheimer’s disease: mechanisms, drug candidates, and new opportunities. ACS Chem Neurosci. 2019;10(2):872-9. doi:10.1021/acschemneuro.8b00402

8.        Savjani JK, Mulamkattil S, Variya B, Patel S. Molecular docking, synthesis and biological screening of mefenamic acid derivatives as anti-inflammatory agents. Eur J Pharmacol. 2017;801:28-34. doi:10.1016/j.ejphar.2017.02.051

9.        RA Abdellatif K, KA Abdelall E, B Bakr R. Nitric oxide-NASIDS donor prodrugs as hybrid safe anti-inflammatory agents. Curr Top Med Chem. 2017;17(8):941-55. doi:10.2174/1568026616666160927153435

10.      Asirvatham S, Dhokchawle BV, Tauro SJ. Quantitative structure activity relationships studies of non-steroidal anti-inflammatory drugs: A review. Arab J Chem. 2019;12(8):3948-62.

11.      Kartsev V, Geronikaki A, Zubenko A, Petrou A, Ivanov M, Glamočlija J, et al. Synthesis and Antimicrobial Activity of New Heteroaryl (aryl) Thiazole Derivatives Molecular Docking Studies. Antibiotics. 2022;11(10):1337. doi:10.3390/antibiotics11101337

12.      Mahmood S, Khan SG, Rasul A, Christensen JB, Abourehab MA. Ultrasound Assisted Synthesis and In Silico Modelling of 1, 2, 4-Triazole Coupled Acetamide Derivatives of 2-(4-Isobutyl phenyl) propanoic acid as Potential Anticancer Agents. Molecules. 2022;27(22):7984. doi:10.3390/molecules27227984

13.      Mallakuntla MK, Togre NS, Santos DB, Tiwari S. Implications of Fragment-Based Drug Discovery in Tuberculosis and HIV. Pharmaceuticals. 2022;15(11):1415. doi:10.3390/ph15111415

14.      Zhang G, Wang M, Zhao J, Wang Y, Zhu M, Wang J, et al. Design, synthesis and in vitro anti-influenza A virus evaluation of novel quinazoline derivatives containing S-acetamide and NH-acetamide moieties at C-4. Eur J Med Chem. 2020;206:112706. doi:10.1016/j.ejmech.2020.112706

15.      Abram M, Zagaja M, Mogilski S, Andres-Mach M, Latacz G, Baś S, et al. Multifunctional hybrid compounds derived from 2-(2, 5-dioxopyrrolidin-1-yl)-3-methoxypropanamides with anticonvulsant and antinociceptive properties. J Med Chem. 2017;60(20):8565-79. doi:10.1021/acs.jmedchem.7b01114

16.      Verma V, Yogi B, Gupta SK. Synthesis of Novel N-(substituted phenyl)-N-(substituted) acetamide Derivatives as a potent Analgesic agent. Res J Pharm Technol. 2020;13(11):5158-64.

17.      Omar AM, AboulWafa OM, El-Shoukrofy MS, Amr ME. Benzoxazole derivatives as new generation of anti-breast cancer agents. Bioorg Chem. 2020;96:103593. doi:10.1016/j.bioorg.2020.103593

18.      Al Kury LT, Zeb A, Abidin ZU, Irshad N, Malik I, Alvi AM, et al. Neuroprotective effects of melatonin and celecoxib against ethanol-induced neurodegeneration: a computational and pharmacological approach. Drug Des Devel Ther. 2019:2715-27. doi:10.2147/DDDT.S207310

19.      Zhu HY, Zhang D, Zhang Q, Zhao Y, He ZM, Gao YG, et al. 4-Hydroxybenzyl alcohol derivatives and their sedative–hypnotic activities. RSC Adv. 2018;8(35):19539-50. doi:10.1039/c8ra01972j

20.      Albelwi FF, Abdu Mansour HM, Elshatanofy MM, El Kilany Y, Kandeel K, Elwakil BH, et al. Design, Synthesis and Molecular Docking of Novel Acetophenone-1, 2, 3-Triazoles Containing Compounds as Potent Enoyl-Acyl Carrier Protein Reductase (InhA) Inhibitors. Pharmaceuticals. 2022;15(7):799. doi:10.3390/ph15070799

21.      Nasr T, Aboshanab AM, Mpekoulis G, Drakopoulos A, Vassilaki N, Zoidis G, et al. Novel 6-Aminoquinazolinone Derivatives as Potential Cross GT1-4 HCV NS5B Inhibitors. Viruses. 2022;14(12):2767. doi:10.3390/v14122767

22.      John R. Handbook of Chemistry and Physics (99th ed.). CRC Press; 2018. pp. 3-5.

23.      Xia Y, Jiang H, Wu W. Recent Advances in Chemical Modifications of Nitriles. Eur J Organ Chem. 2021;2021(48):6658-69.

24.      Kaur K, Srivastava S. Beckmann rearrangement catalysis: A review of recent advances. N J Chem. 2020;44(43):18530-72. doi:10.1039/D0NJ02034F

25.      Ke F, Xu Y, Zhu S, Lin X, Lin C, Zhou S, et al. Electrochemical N-acylation synthesis of amides under aqueous conditions. Green Chem. 2019;21(16):4329-33. doi:10.1039/C9GC01391A

26.      Zarecki AP, Kolanowski JL, Markiewicz WT. Microwave-assisted catalytic method for a green synthesis of amides directly from amines and carboxylic acids. Molecules. 2020;25(8):1761. doi:10.3390/molecules25081761

27.      Mahmoudi AE, Tachallait H, Moutaoukil Z, Arshad S, Karrouchi K, Benhida R, et al. Ultrasound‐Assisted Green Synthesis of 3, 5‐Disubstituted Isoxazole Secondary Sulfonamides via One‐Pot Five‐Component Reaction using CaCl2/K2CO3 as Pre‐Catalyst in Water. ChemistrySelect. 2022;7(45):e202203072. doi:10.1002/slct.202203072.

28.      Crocker MS, Deng Z, Johnston JN. Preparation of N-Aryl Amides by Epimerization-Free Umpolung Amide Synthesis. J Am Chem Soc. 2022;144(37):16708-14. doi:10.1021/jacs.2c05986

29.      Cooper TW, Campbell IB, Macdonald SJ. Factors determining the selection of organic reactions by medicinal chemists and the use of these reactions in arrays (small focused libraries). Angew Chem Int Ed. 2010;49(44):8082-91. doi:10.1002/anie.201002238

30.      Singh RK, Duvedi R. Environment-friendly green chemistry approaches for an efficient synthesis of 1-amidoalkyl-2-naphthols catalyzed by tannic acid. Arab J Chem. 2018;11(1):91-8. doi:10.1016/j.arabjc.2014.08.022

31.      Bousfield TW, Pearce KP, Nyamini SB, Angelis-Dimakis A, Camp JE. Synthesis of amides from acid chlorides and amines in the bio-based solvent Cyrene™. Green Chem. 2019;21(13):3675-81. doi:10.1039/C9GC01180C, 3675-81.

32.      Szczęśniak-Sięga B, Maniewska J, Poła A, Środa-Pomianek K, Malinka W, Michalak K. Synthesis of new piroxicam derivatives and their influence on lipid bilayers. Acta Pol Pharm. 2014;71(6):1045-50.

33.      Rani P, Pal DK, Hegde RR, Hashim SR. Synthesis, characterization and pharmacological evaluation of substituted phenoxy acetamide derivatives. Hem Ind. 2015;69(4):405-15. doi:10.2298/HEMIND140330057R

34.      Ju Z, Li M, Xu J, Howell DC, Li Z, Chen FE. Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years. Acta Pharm Sin B. 2022,12(6):2790-807. doi:10.1016/j.apsb.2022.01.002

35.      Şahin Z, Kalkan M, Berk B, Yurttaş L, Bender C, Kaleli SN, et al. Synthesis, characterization, COX1/2 inhibition and molecular modeling studies on novel 2-thio-diarylimidazoles. Turk J Chem. 2021;45(6):1841-53. doi:10.3906/kim-2104-54

36.      Mohammed KO, Nissan YM. Synthesis, molecular docking, and biological evaluation of some novel hydrazones and pyrazole derivatives as anti‐inflammatory agents. Chem Biol Drug Des. 2014;84(4):473-88. doi:10.1111/cbdd.12336

37.      Li SM, Tsai SE, Chiang CY, Chung CY, Chuang TJ, Tseng CC, et al. New methyl 5-(halomethyl)-1-aryl-1H-1, 2, 4-triazole-3-carboxylates as selective COX-2 inhibitors and anti-inflammatory agents: design, synthesis, biological evaluation, and docking study. Bioorg Chem. 2020;104:104333. doi:10.1016/j.bioorg.2020.104333

38.      El-Sayed NA, Nour MS, Salem MA, Arafa RK. New oxadiazoles with selective-COX-2 and EGFR dual inhibitory activity: Design, synthesis, cytotoxicity evaluation and in silico studies. Eur J Med Chem. 2019;183:111693. doi:10.1016/j.ejmech.2019.111693

39.      Dunetz JR, Magano J, Weisenburger GA. Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals. Org Process Res Dev. 2016;20(2):140-77. doi:10.1021/op500305s

40.      Puttaswamy N, Malojiao VH, Mohammed YH, Sherapura A, Prabhakar BT, Khanum SA. Synthesis and amelioration of inflammatory paw edema by novel benzophenone appended oxadiazole derivatives by exhibiting cyclooxygenase-2 antagonist activity. Biomed Pharmacother. 2018;103:1446-55. doi:10.1016/j.biopha.2018.04.167

41.      Sakr A, Rezq S, Ibrahim SM, Soliman E, Baraka MM, Romero DG, et al. Design and synthesis of novel quinazolinones conjugated ibuprofen, indole acetamide, or thioacetohydrazide as selective COX-2 inhibitors: anti-inflammatory, analgesic and anticancer activities. J Enzyme Inhib Med Chem. 2021;36(1):1810-28. doi:10.1080/14756366.2021.1956912

42.      Popko K, Gorska E, Stelmaszczyk-Emmel A, Plywaczewski R, Stoklosa A, Gorecka D, et al. Proinflammatory cytokines Il-6 and TNF-α and the development of inflammation in obese subjects. Eur J Med Res. 2010;15 Suppl 2(Suppl 2):120-2. doi:10.1186/2047-783x-15-s2-120

43.      Mabrouk AA, Tadros MI, El-Refaie WM. Improving the efficacy of Cyclooxegenase-2 inhibitors in the management of oral cancer: Insights into the implementation of nanotechnology and mucoadhesion. J Drug Deliv Sci Technol. 2021;61:102240. doi:10.1016/j.jddst.2020.102240.

44.      Al-Lawati H, Binkhathlan Z, Lavasanifar A. Nanomedicine for the effective and safe delivery of non-steroidal anti-inflammatory drugs: A review of preclinical research. Eur J Pharm Biopharm. 2019;142:179-94. doi:10.1016/j.ejpb.2019.06.025


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.