Archive \ Volume.14 2023 Issue 3

Novichok Toxicology: A Review Study

Florica Voiţă-Mekereş, Cristian Delcea, Camelia Liana Buhaș, Veronica Ciocan

One of the most important types of chemical weapons is nerve agents. In recent years, a group of the newest, most unknown, and at the same time the most common nerve agents known as Novichok has been used in terrorist attacks. It is necessary to become more familiar with the basic and clinical chemical and pharmacologic features of this group of nerve agents for all the employees of the medical group. In this article, while reviewing the history of development and production, chemical structure, mechanism of action, toxicokinetic, and toxicology of these agents, the latest information regarding the methods of diagnosis and treatment of poisoning with these agents was also reviewed. Contrary to early information, it appears that Novichok poisoning is similar to other organophosphate agents and can be managed with prompt and appropriate treatment. Considering the existence of global threats in the field of terrorist incidents with these agents, the medical team must be familiar with these poisons to diagnose and treat the victims optimally.

Downloads: 36
Views: 65

How to cite:
Voiţă-Mekereş F, Delcea C, Buhaș CL, Ciocan V. Novichok Toxicology: A Review Study. Arch Pharm Pract. 2023;14(3):62-6.
Voiţă-Mekereş, F., Delcea, C., Buhaș, C. L., & Ciocan, V. (2023). Novichok Toxicology: A Review Study. Archives of Pharmacy Practice, 14(3), 62-66.

Download Citation

1.        Suchard JR. Chemical weapons. In: Nelson LS, Howland MA, Lewin NA, Smith SW, Goldfrank LR, Hoffman RS, editors. Goldfrank's toxicologic emergencies. New York: McGraw Hill; 2019.

2.        Martyshuk T, Gutyj B, Vyshchur O, Paterega I, Kushnir V, Bigdan OA, et al. Study of Acute and Chronic Toxicity of" Butaselmevit" on Laboratory Animals. Arch Pharm Pract. 2022;13(3):70-5.

3.        Sotnikov BA, Kravchenko VA, Shchuchka RV. The rate of crop residue decomposition as a function of the chemical composition of field crops. Entomol Appl Sci Lett. 2021;8(2):16-9.

4.        Alshammari EM. Simultaneous Detection of Toxic and Heavy Metals in the Scalp Hair Samples of Smokers. J Biochem Technol. 2022;13(1):50-6.

5.        Dukueva MZ, Abdullayeva GR, Kagirov GM, Babaev ZR, Shapovalov LO, Danenko JI. Biological Significance and Toxicological Properties of Iron, Selenium, and Iodine. Pharmacophore. 2022;13(4):112-8.

6.        Bigdan O. Toxicity of Substance BKP-115 on Rats and Mice of Both Sexes at Long Term Intragastric Introduction. Arch Pharm Pract. 2021;12(2):6-11.

7.        Ganesan K, Raza SK, Vijayaraghavan R. Chemical warfare agents. J Pharm Bioallied Sci. 2010;2(3):166-78.

8.        Alsubeie MS. Morphological, Genetic Characterization, and Chemical Analysis of Castor Bean (Ricinus communis) Growing in Riyadh Saudi Arabia. Entomol Appl Sci Lett. 2023;10(1):38-44.

9.        Alshammari EM. Biological Monitoring Heavy Metals in Fingernails and Scalp Hair of Autoworkers in Saudi Arabia. J Biochem Technol. 2022;13(1):57-64.

10.      Dzhabrailova US, Vagabov VM, Akhaeva ZN, Kasimova ZZ, Kolesnikov SP, Bondarenko NG. Characterization of physic-chemical parameters and toxicological properties of neomycin. Pharmacophore. 2022;13(5):44-50.

11.      Redzuan AM, Hui LY, Saffian SM, Islahudin FH, Bakry MM, Aziz SA. Features of Digoxin Toxicity in Atrial Fibrillation and Congestive Heart Failure Patients: A Systematic Review. Arch Pharm Pract. 2023;14(1):50-5.

12.      Mukherjee S, Gupta RD. Organophosphorus nerve agents: Types, toxicity, and treatments. J Toxicol. 2020:1-16.

13.      Soltaninejad K, Shadnia S. History of the use and epidemiology of organophosphorus poisoning. In: Balali-Mood M, Abdollahi M. Basic and clinical toxicology of organophosphorus compounds. London: Springer; 2014.

14.      Weir AGA, Makin S, Breeze J. Nerve agents: Emergency preparedness. BMJ Mil Health. 2020;166(1):42-6.

15.      Nepovimovaa E, Kuca K. Chemical warfare agent Novichok-mini-review of available data. Food Chem Toxicol. 2018;121:343-50.

16.      Djahra AB, Zoubiri F, Benkaddour M, Gouasmia S. Antioxidant and hepatoprotective activity of ephedra alata extract against intoxication with deltamethrin pesticide in male rats. Pharmacophore. 2023;14(1):19-24.

17.      Lukey BJ, Romano Jr JA, Romano JA, Salem H. Chemical warfare agents: Chemistry, pharmacology, toxicology, and therapeutics. Boca Raton: CRC Press; 2007.

18.      Chai PR, Hayesb BD, Erickson TB, Boyer EW. Novichok agents: A historical, current, and toxicological perspective. Toxicol Commun. 2018;2(1):45-8.

19.      Patocka J. Novichok agents-mysterious poisonous substances from the cold war period. Mil Med Sci Lett. 2018;87:1-3.

20.      Kloske M, Witkiewicz Z. Novichoks-the a group of organophosphorus chemical warfare agents. Chemosphere. 2019;221:672-82.

21.      Franca TCC, Kitagawa DAS, Cavalcante SFA, Da Silva JAV, Nepovimova E, Kuca K. Novichoks: The dangerous fourth generation of chemical weapons. Int J Mol Sci. 2019;20(5):1222.

22.      Loyola BR. Salisbury, Novichok, and the OPCW. Lupine Online J Pharmacol Clin Res. 2019;1(4):91-3. 

23.      Euronews. Novichok nerve agent attacks in England: What we know? [Internet]. Lyon: Euronews; 2020 [Cited 2020 Dec 9]. Available from:

24.      GOV.UK. Novichok nerve agent used in Salisbury: UK government response [Internet]. London: GOV.UK; 2020 [Cited 2020 Dec 8]. Available from:

25.      Costanzi S, Koblentz GD. Controlling Novichoks after Salisbury: Revising the chemical weapons convention schedules. Nonprofit Rev. 2019;26(5-6):599-612.

26.      Organization for the prohibition of chemical weapons. The incident in Salisbury [Internet]. The Hague: OPCW; 2020 [Cited 2020 Dec 2]. Available from:

27.      France's diplomacy. Chemical weapons-OPCW report on the Skripal case (11 April 2018) [Internet]. City Unknown: France Diplomacy; 2020 [Cited 2020 Dec 5]. Available from: 

28.      The guardian. Salisbury attack: Inquest must look into the role of Russian officials, court told [Internet]. London: The Guardian; 2020 [Cited 2020 Dec 10]. Available from:

29.      Counter-terrorism policing. Salisbury and Amesbury investigation [Internet]. City Unknown: Counter Terrorism Policing; 2020 [Cited 2020 Dec 9]. Available from:

30.      Galeotti M. The Navalny poisoning case through the hybrid warfare lens [Internet]. Helsinki: Hybrid CoE; 2020; [Cited 2020 Dec 8]. Available from: 

31.      Organization for the prohibition of chemical weapons. OPCW issues report on technical assistance requested by Germany [Internet]. The Hague: OPCW; 2020 [Cited 2020 Dec 9]. Available from: 

32.      Euronews. Russia alleges Navalny could have been poisoned on the medical plane to Germany [Internet]. Lyon: Euronews; 2020 [Cited 2020 Dec 4]. Available from: 

33.      Mirzayanov VS. State secrets: An insider's chronicle of the Russian chemical weapons program. Denver: Outskirts Press: 2008. 

34.      Ellison DH. Handbook of chemical and biological warfare agents. New York: CRC Press; 2007. 

35.      Hoeing SL. Compendium of chemical warfare agents. Berlin: Springer Science & Business Media; 2006. 

36.      Imrit YA, Bhakhoa H, Sergeieva T, Danes S, Savoo N, Elzagheid MI, et al. A theoretical study of the hydrolysis mechanism of A-234; the suspected Novichok agent in the Skripal attack. RSC Adv. 2020;10(47):27884-93. 

37.      Harvey SP, McMahon LR, Berg FJ. Hydrolysis and enzymatic degradation of Novichok nerve agents. Heliyon. 2020;6(1):03153.

38.      Carlsen L. After Salisbury nerve agents revisited. Mol Inform. 2019;38(8-9):1800106.

39.      Dvir H, Silman I, Harel M, Terrone L, Rosenberry TL, Sussman JL. Acetylcholinesterase: From 3D structure to function. Chem Biol Interact. 2010;187(1-3):10-22.

40.      Soltaninejad K. Biomarkers of organophosphorus compounds poisoning and exposure: A review. In: Dishovsky C, Radenkova-Saeva J. Toxicological problems. Oxford: Military Publishing House; 2014. 

41.      Sirin GS, Zhou Y, Lior-Hoffmann L, Wang S, Zhang Y. Aging mechanism of soman inhibited acetylcholinesterase. J Phys Chem B. 2012;116(40):12199-207.

42.      Jeong K, Choi J. Theoretical study on the toxicity of Novichok agent candidates. R Soc Open Sci. 2019;6(8):190414.

43.      Hulse EJ, Haslam JD, Emmett SR, Woolley T. Organophosphorus nerve agent poisoning: Managing the poisoned patient. Br J Anaesth. 2019;123(4):457-63.

44.      Vale JA, Marrs TC, Maynard RL. Novichok: A murderous nerve agent attack in the UK. Clin Toxicol. 2018;56(11):1093-7.

45.      Pohanka M. Diagnoses of pathological states based on acetylcholinesterase and butyrylcholinesterase. Curr Med Chem. 2020;27(18):2994-3011.

46.      North Atlantic treaty organization. Nerve agents. Medical management of CBRN casualties [Report]. Brussels: NATO Standardization Office; 2006 June. Report No.: AMedP-7.1. 

47.      Soltaninejad K, Shadnia S, Afkhami-Taghipour M, Saljooghi R, Mohammadirad A, Abdollahi M. Blood beta-glucuronidase as a suitable biomarker at acute exposure of severe organophosphorus poisoning in human. Hum Exp Toxicol. 2007;26(12):963-6.

48.      Zeman J, Vetchy D, Pavlokova S, Franc A, Pitschmann V, Dominik M, et al. Tubes for detection of cholinesterase inhibitors-unique effects of muslin on the stability of butyrylcholinesterase-impregnated carriers. Enzyme Microb Technol. 2019;128:26-33.

49.      Zeman J, Vetchy D, Pavlokova S, Franc A, Pitschmann V. Unique coated neusilin pellets with a more distinct and fast visual detection of nerve agents and other cholinesterase inhibitors. J Pharm Biomed Anal. 2020;179:113004. 

50.      Hosseini SE, Saeidian H, Amozadeh A, Naseri MT, Babri M. Fragmentation pathways and structural characterization of organophosphorus compounds related to the chemical weapons convention by electron ionization and electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(24):2585-93.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.