Archive \ Volume.13 2022 Issue 3

Sensitivity and Reliability of Two Antibodies in Detecting E. coli in Meat and Water

, , ,

Abstract

Detection of E. coli in water and food constitutes a major challenge. However, the outer membrane proteins of this Gram-negative bacterium represent an excellent choice for their detection and diagnosis. Two outer membrane proteins: A and C, play important roles as drug modulators and in cellular permeability for this bacterium. Here we employed the antibodies raised against these two outer membrane proteins for the development of dot-blot immunoassays to detect this bacterium in water and meat samples. This immune-based assay was not only sensitive and reliable but rapid and cheap to perform. Sensitivities and specificities were demonstrated at the lowest detection limits of just two to three cells per milliliter, while the upper limit reached 107 cells per milliliter. In conclusion, the simplicity and extremely high resolution of this colored-based immunoassay test would be of great importance for untrained food and/or water inspectors or laboratory personnel to use with immediate visual results.


Downloads: 261
Views: 1205

How to cite:
Vancouver
Mashat BH, Awad MM, Amin AH, Osman YA. Sensitivity and Reliability of Two Antibodies in Detecting E. coli in Meat and Water. Arch Pharm Pract. 2022;13(3):33-40. https://doi.org/10.51847/dHYFEsOys8
APA
Mashat, B. H., Awad, M. M., Amin, A. H., & Osman, Y. A. (2022). Sensitivity and Reliability of Two Antibodies in Detecting E. coli in Meat and Water. Archives of Pharmacy Practice, 13(3), 33-40. https://doi.org/10.51847/dHYFEsOys8

Download Citation
References

1.      Alhammad MA, Alanazi SS, Hassan Z, Almadan GA, Alabbas AY, Abdulmajid Z, et al. Acute Gastroenteritis in Children, Overview, Etiology, and Management. Entomol Appl Sci Lett. 2020;7(4):76-82.

2.      Ribić R, Meštrović T, Neuberg M, Kozina G. Effective anti-adhesives of uropathogenic Escherichia coli. Acta Pharm. 2018;68(1):1-8.

3.      Li J, Zhu Y, Wu X, Hoffmann MR. Rapid detection methods for bacterial pathogens in ambient waters at the point of sample collection: a brief review. Clin Infect Dis. 2020;71(Supplement_2):S84-90. doi:0.1093/cid/ciaa498

4.      Wang P, Wang A, Hassan MM, Ouyang Q, Li H, Chen Q. A highly sensitive upconversion nanoparticles-WS2 nanosheet sensing platform for Escherichia coli detection. Sensors and Actuators B: Chemical. 2020;320:128434. doi:10.1016/j.snb.2020.128434

5.      Zhao YW, Wang HX, Jia GC, Li Z. Application of aptamer-based biosensor for rapid detection of pathogenic Escherichia coli. Sensors. 2018;18(8):2518. doi:10.3390/s18082518

6.      Muniandy S, Teh SJ, Thong KL, Thiha A, Dinshaw IJ, Lai CW, et al. Carbon nanomaterial-based electrochemical biosensors for foodborne bacterial detection. Crit Rev Anal Chem. 2019;49(6):510-33.

7.      Hua R, Hao N, Lu J, Qian J, Liu Q, Li H, et al. A sensitive Potentiometric resolved ratiometric Photoelectrochemical aptasensor for Escherichia coli detection fabricated with non-metallic nanomaterials. Biosens Bioelectron. 2018;106:57-63. doi:10.1016/j.bios.2018.01.053

8.      Galvan DD, Parekh V, Liu E, Liu EL, Yu Q. Sensitive bacterial detection via dielectrophoretic-enhanced mass transport using surface-plasmon-resonance biosensors. Anal Chem. 2018;90(24):14635-42.

9.      Kumar H, Bhardwaj K, Kaur T, Nepovimova E, Kuča K, Kumar V, et al. Detection of Bacterial Pathogens and Antibiotic Residues in Chicken Meat: A Review. Foods. 2020;9(10):1504.

10.   Hashem A, Hossain MM, Marlinda AR, Mamun MA, Sagadevan S, Shahnavaz Z, et al. Nucleic acid-based electrochemical biosensors for rapid clinical diagnosis: Advances, challenges, and opportunities. Crit Rev Clin Lab Sci. 2022;59(3):156-77.

11.   Eksi H, Güzel R, Güven B, Boyaci IH, Solak AO. Fabrication of an Electrochemical E. coli biosensor in biowells using bimetallic nanoparticle‐labelled antibodies. Electroanalysis. 2015;27(2):343-52.

12.   Jozić S, Vukić Lušić D, Aljinović A, Vlakančić W, Cenov A, Vrdoljak Tomaš A, et al. Is TBX agar a suitable medium for monitoring Escherichia coli in bathing water using the membrane filtration method?. Environ Monit Assess. 2019;191(9):1-2.

13.   Mahmood T, Yang PC. Western blot: technique, theory, and trouble shooting. N Am J Med Sci. 2012;4(9):429. doi:10.4103/1947-2714.100998

14.   Zaidi SA. Bacterial imprinting methods and their applications: an overview. Crit Rev Anal Chem. 2021;51(7):609-18.

15.   Ravindran N, Kumar S, CA M, Thirunavookarasu SN, CK S. Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: A review. Crit Rev Food Sci Nutr. 2021:1-23. doi:10.1080/10408398.2021.1958745

16.   Riu J, Giussani B. Electrochemical biosensors for the detection of pathogenic bacteria in food. TrAC Trends Analyt Chem. 2020;126:115863. doi:10.1016/j.trac.2020.115863

17.   Huang Y, Su Z, Li W, Ren J. Recent Progresses on Biosensors for Escherichia coli Detection. Food Anal Methods. 2022;15(2):338-66. doi:10.1007/s12161-021-02129-7

18.   Helali S, Abdelghani A. Fast Detection of Pathogenic Escherichia coli from Chicken Meats. InE. Coli Infections-Importance of Early Diagnosis and Efficient Treatment 2020 Mar 12. IntechOpen. doi:10.5772/intechopen.80139

19.   Novinrooz A, Zahraei Salehi T, Firouzi R, Arabshahi S, Derakhshandeh A. In-silico design, expression, and purification of novel chimeric Escherichia coli O157: H7 OmpA fused to LTB protein in Escherichia coli. PLoS One. 2017;12(3):e0173761.

20.   Haqshenas G, Akrami H, Shayegh M. Molecular cloning and expression of nucleocapsid gene of chicken infectious bronchitis virus strain Massachusetts H120. J Sci I. R. Iran. 2004;15:211-8.

21.   Tian G, Tang F, Yang C, Zhang W, Bergquist J, Wang B, et al. Quantitative dot blot analysis (QDB), a versatile high throughput immunoblot method. Oncotarget. 2017;8(35):58553-62.

22.   Ma X, Ding W, Wang C, Wu H, Tian X, Lyu M, et al. DNAzyme biosensors for the detection of pathogenic bacteria. Sens Actuators B Chem. 2021;331:129422.

23.   Justiz Vaillant AA, McFarlane-Anderson N, Akpaka PE, Smikle MP, Ramirez N, Cadiz A. Use of dot blots analysis in the separation of anti-HIV antibodies in animals. J Chromat Separation Techniq. 2013;4(5):181.

24.   Tommassen J. Assembly of outer-membrane proteins in bacteria and mitochondria. Microbiology. 2010;156(9):2587-96.

25.   Xu M, Wang R, Li Y. Electrochemical biosensors for rapid detection of Escherichia coli O157: H7. Talanta. 2017;162:511-22. doi:10.1016/j.talanta.2016.10.050

26.   WHO. World health organization. Diarrhoeal disease. 2017. (Accessed at 24 july 2022) Available from: https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease

27.   Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci. 2022;116:772-85.

28.   Latifi Z, Morakabati N, Dehghan L, Ghafuri Z. Coronavirus Disease 2019 “Covid-19” and Its Relation to Food. Int J Pharm Phytopharmacol Res. 2020;10(5):185-94.

29.   Wang Y, Ma X, Qiao X, Yang P, Sheng Q, Zhou M, et al. Perspectives for Recognition and Rapid Detection of Foodborne Pathogenic Bacteria Based on Electrochemical Sensors. eFood. 2021;2(3):125-39.

30.   Ahmad W, Mohammed GI, Al-Eryani DA, Saigl ZM, Alyoubi AO, Alwael H, et al. Biogenic amines formation mechanism and determination strategies: Future challenges and limitations. Crit Rev Anal Chem. 2020;50(6):485-500.

31.   Mohseny M, Shekarriz-Foumani R, Mohseni M, Ghadirian L, Jafari H, Goudarzian M, et al. Structures and Practices in Clinical Preventive Services. Int J Pharm Phytopharmacol Res. 2019;9(6):66-70.

32.   Rollauer SE, Sooreshjani MA, Noinaj N, Buchanan SK. Outer membrane protein biogenesis in Gram-negative bacteria. Philos Trans R Soc Lond B Biol Sci. 2015;370(1679):20150023.

33.   Liu YF, Yan JJ, Lei HY, Teng CH, Wang MC, Tseng CC, et al. Loss of outer membrane protein C in Escherichia coli contributes to both antibiotic resistance and escaping antibody-dependent bactericidal activity. Infect Immun. 2012;80(5):1815-22.

34.   Xue L, Guo R, Huang F, Qi W, Liu Y, Cai G, et al. An impedance biosensor based on magnetic nanobead net and MnO2 nanoflowers for rapid and sensitive detection of foodborne bacteria. Biosens Bioelectron. 2021;173:112800. doi:10.1016/j.bios.2020.112800

35.   Gaudin V. Receptor-based electrochemical biosensors for the detection of contaminants in food products. InElectrochemical Biosensors 2019 Jan 1 (pp. 307-365). Elsevier. doi:10.1016/B978-0-12-816491-4.00011-5

36.   Jiang X, Chen K, Wang J, Shao K, Fu T, Shao F, et al. Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide–Ag nanoparticle composites as labels. Analyst. 2013;138(12):3388-93.

37.   Stilman W, Campolim Lenzi M, Wackers G, Deschaume O, Yongabi D, Mathijssen G, et al. Low cost, sensitive impedance detection of E. coli bacteria in food‐matrix samples using surface‐imprinted polymers as whole‐cell receptors. Physica Status Solidi A. 2021:2100405. doi:10.1002/pssa.202100405

38.     Hejair HM, Zhu Y, Ma J, Zhang Y, Pan Z, Zhang W, et al. Functional role of ompF and ompC porins in pathogenesis of avian pathogenic Escherichia coli. Microb Pathog. 2017;107:29-37.

39.   Liu C, Chen Z, Tan C, Liu W, Xu Z, Zhou R, et al. Immunogenic characterization of outer membrane porins OmpC and OmpF of porcine extraintestinal pathogenic Escherichia coli. FEMS Microbiol Lett. 2012;337(2):104-11.

40.   Gunda NS, Dasgupta S, Mitra SK. DipTest: A litmus test for E. coli detection in water. PLoS One. 2017;12(9):e0183234. doi:10.1371/journal.pone.0183234

41.   Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci. 2018;13(1):12-23. doi:10.1016/j.ajps.2017.08.004


 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.