Archive \ Volume.14 2023 Issue 2

Study of the Structural and Mechanical Properties of Erythrocyte Membranes Using Atomic Force Microscopy

Akhmad Ramanovich Orusbiev, Tamila Gajibutayevna Alunkacheva, Maryana Sabirullaevna Charandaeva, Bella Saidaminovna Kireeva, Magomedali Feizulaevich Gadzhiev, Vladislav Gennadevich Zelenetckii

Red blood cells (erythrocytes) are one of the most common cells in the human body and are responsible for transporting oxygen to tissues and removing carbon dioxide from the body. The study of the structure of erythrocyte membranes is of great importance for understanding their functions and the possibility of detecting various pathological conditions associated with a violation of the mechanical properties of membranes. Atomic force microscopy is a powerful tool for studying the nanostructural properties of membranes and allows the obtaining of high-quality images and data on mechanical properties. This article describes an experimental technique used to study the structure of erythrocyte membranes, as well as the results obtained and their analysis. The morphology and elastic properties of blood cells were analyzed by atomic force microscopy. Quantitative estimates of the elastic modulus of the cell membrane in the mode of force spectroscopy have been performed. The values of the elastic modulus of erythrocytes were determined depending on the localization of the indentation area and the time of exposure to the membrane surface by the probe. A significant dependence of the results of the elastic modulus estimation on the rate of indenter action on the cell membrane is shown.

Downloads: 15
Views: 23

How to cite:
Orusbiev AR, Alunkacheva TG, Charandaeva MS, Kireeva BS, Gadzhiev MF, Zelenetckii VG. Study of the Structural and Mechanical Properties of Erythrocyte Membranes Using Atomic Force Microscopy. Arch Pharm Pract. 2023;14(2):70-4.
Orusbiev, A. R., Alunkacheva, T. G., Charandaeva, M. S., Kireeva, B. S., Gadzhiev, M. F., & Zelenetckii, V. G. (2023). Study of the Structural and Mechanical Properties of Erythrocyte Membranes Using Atomic Force Microscopy. Archives of Pharmacy Practice, 14(2), 70-74.

Download Citation

1.        Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers. 2020;12(5):1142. doi:10.3390/polym12051142

2.        Xia F, Youcef-Toumi K. Review: Advanced Atomic Force Microscopy Modes for Biomedical Research. Biosensors (Basel). 2022;12(12):1116. doi:10.3390/bios12121116

3.        An Y, Manuguri SS, Malmström J. Atomic Force Microscopy of Proteins. Methods Mol Biol. 2020;2073:247-85. doi:10.1007/978-1-4939-9869-2_14

4.        Almalki GH, Rabah S, Said Arafa NM, Bahshwan SM. Immunohistochemical evaluation of the euphorbia inarticulata extract on liver and kidney tissues in hepatocellular carcinoma rats. Pharmacophore. 2022;13(2):33-40.

5.        Allison DP, Mortensen NP, Sullivan CJ, Doktycz MJ. Atomic force microscopy of biological samples. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(6):618-34. doi:10.1002/wnan.104

6.        Kodera N, Ando T. Visualization of intrinsically disordered proteins by high-speed atomic force microscopy. Curr Opin Struct Biol. 2022;72:260-6. doi:10.1016/

7.        Dorobantu LS, Goss GG, Burrell RE. Atomic force microscopy: a nanoscopic view of microbial cell surfaces. Micron. 2012;43(12):1312-22. doi:10.1016/j.micron.2012.05.005

8.        Gurkan UA. Biophysical and rheological biomarkers of red blood cell physiology and pathophysiology. Curr Opin Hematol. 2021;28(3):138-49. doi:10.1097/MOH.0000000000000639

9.        Nobandegani AS, Motamedifar M. Antibiotic sensitivity profile of the bacterial isolates from the blood samples of the patients in different wards of a major referral hospital, Shiraz, Iran 2015-2016. Pharmacophores. 2019;10(2):30-6.

10.      Alexy T, Dietrich J, Connes P, Toth K, Nader E, Kenyeres P, et al. Physical Properties of Blood and their Relationship to Clinical Conditions. Front Physiol. 2022;13:906768. doi:10.3389/fphys.2022.906768

11.      Baig BM, Abarian A, Baghaei S, Soroush S, Ataee Rad S, Pooromidi S, et al. Assessment of the Relationship between ABO Blood Group and Susceptibility, Severity, and Mortality Rates in COVID-19. Entomol Appl Sci Lett. 2021;8(2):32-6.

12.      Pinho D, Carvalho V, Gonçalves IM, Teixeira S, Lima R. Visualization and Measurements of Blood Cells Flowing in Microfluidic Systems and Blood Rheology: A Personalized Medicine Perspective. J Pers Med. 2020;10(4):249. doi:10.3390/jpm10040249

13.      Kim G, Lee M, Youn S, Lee E, Kwon D, Shin J, et al. Measurements of three-dimensional refractive index tomography and membrane deformability of live erythrocytes from Pelophylax nigromaculatus. Sci Rep. 2018;8(1):9192. doi:10.1038/s41598-018-25886-8

14.      Vagabov IU, Kafarov ES, Zenin OK. Variants of Blood Supply to Kidney Segments According to 3D Anatomical Analysis. Entomol Appl Sci Lett. 2021;8(1):60-5.

15.      Bhat SH, Ullah MF, Abu-Duhier FM. Anti-hemolytic activity and antioxidant studies of Caralluma quadrangula: potential for nutraceutical development in cancers and blood disorders. Int J Pharm Res Allied Sci. 2019;8(4):121-9.

16.      Demchenkov EL, Nagdalian AA, Budkevich RO, Oboturova NP, Okolelova AI. Usage of atomic force microscopy for detection of the damaging effect of CdCl2 on red blood cell membrane. Ecotoxicol Environ Saf. 2021;208:111683. doi:10.1016/j.ecoenv.2020.111683

17.      Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB. Effects of extracellular matrix viscoelasticity on cellular behavior. Nature. 2020;584(7822):535-46. doi:10.1038/s41586-020-2612-2

18.      Assidi M, Dos Reis F, Ganghoffer JF. Equivalent mechanical properties of biological membranes from lattice homogenization. J Mech Behav Biomed Mater. 2011;4(8):1833-45. doi:10.1016/j.jmbbm.2011.05.040

19.      Moroz VV, Chernysh AM, Kozlova EK, Sergunova VA, Gudkova OE, Khoroshilov SE, et al. Disorders in the Morphology and Nanostructure of Erythrocyte Membranes after Long-term Storage of Erythrocyte Suspension: Atomic Force Microscopy Study. Bull Exp Biol Med. 2015;159(3):406-10. doi:10.1007/s10517-015-2975-9

20.      Himbert S, Blacker MJ, Kihm A, Pauli Q, Khondker A, Yang K, et al. Hybrid Erythrocyte Liposomes: Functionalized Red Blood Cell Membranes for Molecule Encapsulation. Adv Biosyst. 2020;4(3):e1900185. doi:10.1002/adbi.201900185

21.      Parvini CH, Saadi MASR, Solares SD. Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy. Beilstein J Nanotechnol. 2020;11:922-37. doi:10.3762/bjnano.11.77

22.      Müller DJ, Dumitru AC, Lo Giudice C, Gaub HE, Hinterdorfer P, Hummer G, et al. Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems. Chem Rev. 2021;121(19):11701-25. doi:10.1021/acs.chemrev.0c00617

23.      Tsukamoto S, Chiam KH, Asakawa T, Sawasaki K, Takesue N, Sakamoto N. Compressive forces driven by lateral actin fibers are key to the nuclear deformation under uniaxial cell-substrate stretching. Biochem Biophys Res Commun. 2022;597:37-43. doi:10.1016/j.bbrc.2022.01.107


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.