Archive \ Volume.12 2021 Issue 3

The Coexistence of Extended-Spectrum β-lactamase and Metallo-β-Lactamase Genes in Gram-Negative Bacteria

Omar Bashir Ahmed , Atif Hussain. Asghar
Abstract

The coexistence of different classes of beta-lactamases in multiple drug-resistant (MDR) bacteria has widely increased, thus rising diagnostic and treatment challenges. The study aimed at evaluating the prevalence of extended-spectrum beta-lactamase (ESBLs) and Metallo-β-lactamase (MBL) genes in confirmed ESBL producing Gram-negative (G-) bacteria. A stock of 220 G- isolates were studied for producing ESBL and MBL using phenotypic and PCR methods. The results showed that ESBLs were identified in 35.4% of the isolates, out of which 32.1% were MBLs producers, the most prevalent isolates were K. pneumoniae (15.4%), E. coli (7.7%), and Ps. aeruginosa (6.4%), respectively. PCR test confirmed the presence of ≥1 ESBL and MBL genes in 78.2% and 73.1% of the isolates, respectively. CTX-M was the most prevalent gene (70.5%) followed by IMP (61.5%), TEM (27%), VIM (21.8%), and SHV (21.8%). Also, 39.7% of the isolates carried two genes, while 10.8% carried three genes, and 20.5% carried 4 genes. The combination (CTX-M+ IMP) was the most frequent (33.4%) among the isolates. The high prevalence of ESBLs and MBLs in combination was noted, especially in E. coli and K. pneumoniae. Continuous monitoring of β-lactamases coexistence in G- bacteria will help to stop their dissemination and control their spread.



How to cite:
Vancouver
Ahmed O B, Asghar A H. The Coexistence of Extended-Spectrum β-lactamase and Metallo-β-Lactamase Genes in Gram-Negative Bacteria. Arch. Pharm. Pract. 2021;12(3):22-8. https://doi.org/10.51847/TGx8aLP7mY
APA
Ahmed, O. B., & Asghar, A. H. (2021). The Coexistence of Extended-Spectrum β-lactamase and Metallo-β-Lactamase Genes in Gram-Negative Bacteria. Archives Of Pharmacy Practice, 12(3),22-28. https://doi.org/10.51847/TGx8aLP7mY

Download Citation
References

1.        Tiwari R, Sandil S, Nain P, Kaur J. Bacteriological Analysis with Antimicrobial Sensitivity and Resistance Pattern in Blood Culture of Septicemic Patient from Different Wards of a Tertiary Care Hospital in India. Int J Pharm Phytopharmacol Res. 2020;10(4):112-9.

2.        Felix Oghenemaro E, Emmanuel Oise I, Cynthia D. The Effects of Securinega Virosa Leaves on Methicillin-Resistant Staphylococcus Aureus (MRSA). Int J Pharm Res Allied Sci. 2021;10(2):29-34.

3.        Dadgostar P. Antimicrobial Resistance: Implications and Costs. Infect Drug Resist. 2019;12:3903-10. Published 2019 Dec 20. doi:10.2147/IDR.S234610

4.        Founou RC, Founou LL, Essack SY. Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. PLoS One. 2017;12(12):e0189621.

5.        Arcilla MS, van Hattem JM, Haverkate MR, Bootsma MC, van Genderen PJ, Goorhuis A, et al. Import and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study. Lancet Infect Dis. 2017;17(1):78-85.

6.        Thaden JT, Fowler VG, Sexton DJ, Anderson DJ. Increasing incidence of extended-spectrum β-lactamase-producing Escherichia coli in community hospitals throughout the southeastern United States. Infect Control Hosp Epidemiol. 2016;37(1):49-54.

7.        Adler A, Katz DE, Marchaim D. The continuing plague of extended-spectrum b-lactamase-producing Enterobacteriaceae infections. Infect Dis Clin North Am. 2016;30(2):347-75.

8.        Andrew B, Kagirita A, Bazira J. Prevalence of extended-spectrum beta-lactamases-producing microorganisms in patients admitted at KRRH, Southwestern Uganda. Int J Microbiol. 2017;2017. doi:10.1155/2017/3183076

9.        Tan X, Kim HS, Baugh K, Huang Y, Kadiyala N, Wences M, et al. Therapeutic options for metallo-β-lactamase-producing enterobacterales. Infect Drug Resist. 2021;14:125-42. doi: 10.2147/IDR.S246174.

10.      Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6(8):a025247. doi:10.1101/cshperspect.a025247

11.      Bahmani N. Detection of VIM-1, VIM-2 and IMP-1 metallo- β-lactamase genes in Klebsiella pneumoniae isolated from clinical samples in Sanandaj, Kurdistan, west of Iran. Iran J Microbiol. 2019;11(3):225-31.

12.      Adam MA, Elhag WI. Prevalence of metallo-β-lactamase acquired genes among carbapenems susceptible and resistant Gram-negative clinical isolates using multiplex PCR, Khartoum hospitals, Khartoum Sudan. BMC Infect Dis. 2018;18(1):1-6. doi:10.1186/s12879-018-3581-z

13.      Tan X, Kim HS, Baugh K, Huang Y, Kadiyala N, Wences M, et al. Therapeutic options for metallo-β-lactamase-producing enterobacterales. Infect Drug Resist. 2021;14:125-42. doi:10.2147/IDR.S246174

14.      Ju LC, Cheng Z, Fast W, Bonomo RA, Crowder MW. The continuing challenge of metallo-β-lactamase inhibition: mechanism matters. Trends Pharmacol Sci. 2018;39(7):635-47. doi: 10.1016/j.tips.2018.03.007.

15.      Arora S, Bal M. The AmpC β-lactamase producing bacterial isolates at a Kolkata hospital. Ind J Med Res. 2005;122(3):224-33.

16.      Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 24th Informational suppl (M100-S28); Clinical Laboratory Standards Institute (CLSI): Wayne, MD, USA. 2016.

17.      Ahmed OB, Dablool AS. Quality improvement of the DNA extracted by boiling method in gram negative bacteria. Int J Bioassays. 2017;6(4):5347-9. doi:10.21746/ijbio.2017.04.004

18.      Sidjabat HE, Paterson DL, Adams-Haduch JM, Ewan L, Pasculle AW, Muto CA, et al. Molecular epidemiology of CTX-M-producing Escherichia coli isolates at a tertiary medical center in western Pennsylvania. Antimicrob Agents Chemother. 2009;53(11):4733-9.

19.      Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ, et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother. 2006;50(12):4114-23.

20.      Oberoi L, Singh N, Sharma P, Aggarwal A. ESBL, MBL and Ampc β lactamases producing superbugs–Havoc in the Intensive Care Units of Punjab India. J Clin Diagn Res. 2013;7(1):70-3.

21.      Mirza S, Jadhav S, Misra RN, Das NK. Coexistence of β-Lactamases in Community-Acquired Infections in a Tertiary Care Hospital in India. Int J Microbiol. 2019;2019:7019578.

22.      Khan MA, Faiz A. Frequency of carbapenemase producing Klebsiella pneumoniaein Makkah, Saudi Arabia. JMID. 2016;6(3):121-7.

23.      Faidah HS, Momenah AM, El-Said HM, Barhameen AAA, Ashgar SS, JohargyA, et al. Trends in the annual incidence of carbapenem resistant among gram negative bacilli in a large teaching hospital in Makah City, Saudi Arabia. J Tuberc Res. 2017;5(04):229-36.

24.      Ahmed AMS, Sultan AA, Deshmukh A, Acharya A, Elmi AA, Bansal D, et al. Antimicrobial susceptibility and molecular epidemiology of extended-spectrum beta-lactamase-producing Enterobacteriaceae from intensive care units at Hamad Medical Corporation, Qatar. Antimicrob Resist Infect Control. 2016;5(1):4.

25.      Saeed WM, Ghanem A, El Shafey HM, Manzoor N. Assessment of antimicrobialresistance patterns in Escherichia coli isolated from clinical samples in Madinah, Saudi Arabia. Afr J Microbiol Res. 2018;12:321-6.

26.      Alqasim A, Abu Jaffal A, Alyousef AA. Prevalence of Multidrug Resistance and Extended-Spectrum β-Lactamase Carriage of Clinical Uropathogenic Escherichia coli Isolates in Riyadh, Saudi Arabia. Int J Microbiol. 2018;2018:3026851.

27.      Zhang Z, Zhai Y, Guo Y, Li D, Wang Z, Wang J, et al. Characterization of Unexpressed Extended-Spectrum Beta-Lactamase Genes in Antibiotic-Sensitive Klebsiella pneumonia Isolates. Microb Drug Resist. 2018;24(6):799-806.

28.      Zandi H, Tabatabaei SM, Ehsani F, Zarch MB, Doosthosseini S. Frequency of Extended- Spectrum Beta-lactamases (ESBLs) in strains of Klebsiella and E. coli isolated from patients hospitalized in Yazd. Electron Physician. 2017;9(2):3810-5.

29.      Adam MA, Elhag WI. Prevalence of metallo-β-lactamase acquired genes among carbapenems susceptible and resistant Gram-negative clinical isolates using multiplex PCR, Khartoum hospitals, Khartoum Sudan. BMC Infect Dis. 2018;18(1):668.

30.      Mereuţă AI, Bădescu AC, Dorneanu OS, Iancu LS, Tuchiluş CG. Spread of VIM-2 metallo-beta-lactamase in Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolatesfrom Iasi, Romania. Rev Rom Med Lab. 2013;21(12):423-30.

31.      Amudhan MS, Sekar U, Kamalanathan A, Balaraman S. Bla-IMP and Bla-VIM mediated carpabenem resistance in Pseudomonas and Acinetobacer species in India. J Infect Dev Ctries. 2012;6(11):757-62.

32.      Nelly M, Raafat M, Raafat D. Phenotypic and genotypic detection of MBLs in imipenem-resistance A.baumanii isolates from a tertiary hospital in Alexandria, Egypt. Egypt Res J Microbiol. 2011;6(10):750-60.

33.      Abrar S, Vajeeha A, Ul-Ain N, Riaz S. Distribution of CTX-M group I and group III β-lactamases produced by Escherichia coli and Klebsiella pneumoniae in Lahore, Pakistan. Microb Pathog. 2017;103:8-12.

34.      Sonda T, Kumburu H, van Zwetselaar M, Alifrangis M, Mmbaga BT, Lund O, et al. Prevalence and risk factors for CTX-M gram-negative bacteria in hospitalized patients at a tertiary care hospital in Kilimanjaro, Tanzania. Eur J Clin Microbiol Infect Dis. 2018;37(5):1-10.

35.      Zhao D, Quan J, Liu L, Du X, Chen Y, Jiang Y, et al. High prevalence of ESBLproducing Escherichia coli and Klebsiella pneumoniae in community-onset bloodstream infections in China. J Antimicrob Chemother. 2016;72(1):273-80.

36.      Pavez M, Troncoso C, Osses I, Salazar R, Illesca V, Reydet P, et al. High prevalence of CTX-M-1 group in ESBL-producing enterobacteriaceae infection in intensive care units in southern Chile. Braz J Infect Dis. 2019;23(2):102-10.

37.      Anoar KA, Ali FA, Omer SA. Detection of Metallo β-lactamase enzyme in some gram-negative bacteria isolated from burn patients in Sulaimani city, Iraq. Eur Sci J. 2014;10(1):485-96.

38.      Alotaibi F. Carbapenem-Resistant Enterobacteriaceae: An update narrative review from Saudi Arabia. J Infect Public Health. 2019;12(4):465-71.

39.      Kazemian H, Heidari H, Ghanavati R, Ghafourian S, Yazdani F, Sadeghifard N, et al. Phenotypic and genotypic characterization of ESBL-, AmpC-, and carbapenemase-producing Klebsiella pneumoniae and Escherichia coli isolates. Med Princ Pract. 2019;28(6):547-51.

40.      Khodadadian R, Rahdar HA, Javadi A, Safari M, Khorshidi A. Detection of VIM-1 and IMP-1 genes in Klebsiella pneumoniae and relationship with biofilm formation. Microb Pathog. 2018;115:25-30.

41.      Al-Zahrani IA, Alasiri BA. The emergence of carbapenem-resistant Klebsiellapneumoniae isolates producing OXA-48 and NDM in the Southern (Asir)province, Saudi Arabia. Saudi Med J. 2018;39(1):23-30.

42.      Okoche D, Asiimwe BB, Katabazi FA, Kato L, Najjuka CF. Prevalence and characterization of Carbapenem-resistant Enterobacteriaceae isolated from Mulago National Referral Hospital, Uganda. PLoS One. 2015;10(8):e0135745.

43.      Aghamiri S, Amirmozafari N, FallahMehrabadi J, Fouladtan B, Samadi KH. Antibiotic resistance pattern and evaluation of Metallo-Beta lactamase genes including Bla-IMP and Bla-VIM types in Pseudomonas aeruginosa isolated from patients in Tehran hospitals. ISRN Microbiol. 2014;2014:941507.

44.      Zafer MM, Al-Agamy NH, El-Mahallawy HA, Amin MA, Ashour MS. Antimicrobial resistance pattern and their β-lactamase encoding genes among Pseudomonas aeruginosa strains isolated from cancer patients. Bio Med Research Int. 2014;2014(5):e101635.

45.      Elbadawi HS, Elhag KM, Mahgoub E, Altayb HN, Ntoumi F, Elton L, et al. Detection and characterization of carbapenem resistant Gram‐negative bacilli isolates recovered from hospitalized patients at Soba University Hospital, Sudan. BMC Microbiol. 2012;21(136):2021.

46.      Doi Y, Paterson DL. Carbapenemase-producing Enterobacteriaceae. Semin Respir Crit Care Med. 2015;36(1):74-84.

47.      Zowawi HM, Sartor AL, Sidjabat HE, Balkhy HH, Walsh TR, Al Johani M. Molecular epidemiology of Carbapenem-resistant Acinetobacter baumannii isolates in the Gulf cooperation council States: dominance of OXA-23-type producers. J Clin Microbiol. 2015;53(3):896-903.

48.      Karaaslan A, Soysal A, Gelmez GA, Kadayifci EK. Molecular characterization and risk factors for carbapenem-resistant gram-negative bacilli colonization in children: emergence of NDM-producing Acinetobacter baumannii in a newborn intensive care unit in Turkey. J Hosp Infect. 2016;92(1):67-72.

49.      Gupta V, Garg R, Garg S, Chander J, Attri AK. Coexistence of extended spectrum beta-lactamases, AmpC beta-lactamases and metallo-beta-lactamases in Acinetobacter baumannii from burns patients: a report from a tertiary care centre of India. Ann Burns Fire Disasters. 2013;26(4):189-92.

50.      Pokhrel RH, Thapa B, Kafle R, Shah PK, Tribuddharat C. Co-existence of beta-lactamases in clinical isolates of Escherichia coli from Kathmandu, Nepal. BMC Res Notes. 2014;7(1):694.