Archive \ Volume.14 2023 Issue 3

The Role of Atomic Force Microscopy in the Study of the Properties of the Erythrocyte Membrane

, , , , ,

Abstract

A comparative analysis of the molecular organization and functions allows us to determine typical disorders of the erythrocyte membrane in various pathological processes and conditions. One of the promising methods for measuring the mechanical characteristics of erythrocytes and erythrocyte membranes is atomic force spectroscopy. This scientific article describes an experiment in which three donors took part. Using an atomic force microscope, the stiffness of the erythrocyte membrane was evaluated in the case of control, with the addition of hemin, as well as hemin in combination with perfluorane. It was found that the use of hemen increases the average stiffness of the erythrocyte membrane by 2.1 times, and the subsequent use of perfluorane returns the indicator to its original value. Thus, perfluorane partially restored the initial stiffness in 85% of cases. This method can be effectively used to measure the stiffness of membranes under the action of modifiers of a different nature, as well as in the study of erythrocyte membranes in clinical conditions.


Downloads: 331
Views: 1383

How to cite:
Vancouver
Neftullaeva AH, Velibegov IN, Kurbanova KN, Magomedalieva MA, Alieva AA, Adoi SZ. The Role of Atomic Force Microscopy in the Study of the Properties of the Erythrocyte Membrane. Arch Pharm Pract. 2023;14(3):10-3. https://doi.org/10.51847/KiR6GgWSN2
APA
Neftullaeva, A. H., Velibegov, I. N., Kurbanova, K. N., Magomedalieva, M. A., Alieva, A. A., & Adoi, S. Z. (2023). The Role of Atomic Force Microscopy in the Study of the Properties of the Erythrocyte Membrane. Archives of Pharmacy Practice, 14(3), 10-13. https://doi.org/10.51847/KiR6GgWSN2

Download Citation
References

1.        Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol. 2022;86(Pt 3):600-15. doi:10.1016/j.semcancer.2021.10.003

2.        Halimah E, Hendriani R, Indradi B, Sofian FF. Cytotoxicity of ethanol extract and its fractions from Acalypha wilkesiana against breast cancer cell MCF-7. J Adv Pharm Educ Res. 2022;12(1):17-20.

3.        Alotaibi NS. Targeting Tumor Microenvironment-associated Immune Cells with Nanoparticles-based Strategies. Pharmacophore. 2021;12(4):1-10.

4.        An TB, Linh DHT, Anh NP, An TTT, Tri N. Immobilization and Performance of Cellulase on Recyclable Magnetic Hydrotalcites. J Biochem Technol. 2022;13(1):13-9.

5.        Risinger M, Kalfa TA. Red cell membrane disorders: structure meets function. Blood. 2020;136(11):1250-61. doi:10.1182/blood.2019000946

6.        Martínez-Vieyra V, Rodríguez-Varela M, García-Rubio D, De la Mora-Mojica B, Méndez-Méndez J, Durán-Álvarez C, et al. Alterations to plasma membrane lipid contents affect the biophysical properties of erythrocytes from individuals with hypertension. Biochim Biophys Acta Biomembr. 2019;1861(10):182996. doi:10.1016/j.bbamem.2019.05.018

7.        Mekeres GM, Buhaș CL, Csep AN, Beiușanu C, Andreescu G, Marian P, et al. The Importance of Psychometric and Physical Scales for the Evaluation of the Consequences of Scars—A Literature Review. Clin Pract. 2023;13(2):372-83.

8.        Mekereș GM, Buhaș CL, Tudoran C, Csep AN, Tudoran M, Manole F, et al. The practical utility of psychometric scales for the assessment of the impact of posttraumatic scars on mental health. Front Public Health. 2023;11:1103714.

9.        Duchnowicz P, Pilarski R, Michałowicz J, Bukowska B. Changes in Human Erythrocyte Membrane Exposed to Aqueous and Ethanolic Extracts from Uncaria tomentosa. Molecules. 2021;26(11):3189. doi:10.3390/molecules26113189

10.      Lu T, Lee CH, Anvari B. Morphological Characteristics, Hemoglobin Content, and Membrane Mechanical Properties of Red Blood Cell Delivery Systems. ACS Appl Mater Interfaces. 2022;14(16):18219-32. doi:10.1021/acsami.2c03472

11.      Banerjee A, Dey T, Majumder R, Bhattacharya T, Dey S, Bandyopadhyay D, et al. Oleic acid prevents erythrocyte death by preserving haemoglobin and erythrocyte membrane proteins. Free Radic Biol Med. 2023;202:17-33. doi:10.1016/j.freeradbiomed.2023.03.019

12.      Kumar K, Sebastiao M, Arnold AA, Bourgault S, Warschawski DE, Marcotte I. In situ solid-state NMR study of antimicrobial peptide interactions with erythrocyte membranes. Biophys J. 2022;121(8):1512-24. doi:10.1016/j.bpj.2022.03.009

13.      Kim G, Lee M, Youn S, Lee E, Kwon D, Shin J, et al. Measurements of three-dimensional refractive index tomography and membrane deformability of live erythrocytes from Pelophylax nigromaculatus. Sci Rep. 2018;8(1):9192. doi:10.1038/s41598-018-25886-8

14.      Koo S, Jang S, Park Y, Park CJ. Reconstructed Three-Dimensional Images and Parameters of Individual Erythrocytes Using Optical Diffraction Tomography Microscopy. Ann Lab Med 2019;39(2):223-6. doi:10.3343/alm.2019.39.2.223

15.      Sarkar P, Chattopadhyay A. Insights into cellular signaling from membrane dynamics. Arch Biochem Biophys. 2021;701:108794. doi:10.1016/j.abb.2021.108794

16.      Nandi T, Ainavarapu SRK. Applications of atomic force microscopy in modern biology. Emerg Top Life Sci. 2021;5(1):103-11. doi:10.1042/ETLS20200255

17.      Dinarelli S, Girasole M, Longo G. FC_analysis: a tool for investigating atomic force microscopy maps of force curves. BMC Bioinform. 2018;19(1):258. doi:10.1186/s12859-018-2265-4

18.      Fadyukova OE, Koshelev VB. Effect of Hydrogen Sulfide on Deformability of Rat Erythrocytes. Bull Exp Biol Med. 2020;169(6):725-8. doi:10.1007/s10517-020-04965-9

19.      Lee SB, Kim YS, Kim JH, Park K, Nam JS, Kang S, et al. Use of RBC deformability index as an early marker of diabetic nephropathy. Clin Hemorheol Microcirc. 2019;72(1):75-84. doi:10.3233/CH-180434

20.      Lee JM, Suh JS, Kim YK. Red Blood Cell Deformability and Distribution Width in Patients with Hematologic Neoplasms. Clin Lab. 2022;68(10). doi:10.7754/Clin.Lab.2022.211260

21.      Demchenkov EL, Nagdalian AA, Budkevich RO, Oboturova NP, Okolelova AI. Usage of atomic force microscopy for detection of the damaging effect of CdCl2 on red blood cells membrane. Ecotoxicol Environ Saf. 2021;208:111683. doi:10.1016/j.ecoenv.2020.111683

22.      Kim YK, Lim YT, Suh JS, Hah JO, Lee JM. Erythrocyte deformability reduction in various pediatric hematologic diseases. Clin Hemorheol Microcirc. 2020;75(3):361-7. doi:10.3233/CH-200817

23.      Elblbesy MA. Microscopic Monitoring of Erythrocytes Deformation under Different Shear Stresses Using Computerized Cone and Plate Flow Chamber: Analytical Study of Normal Erythrocytes and Iron Deficiency Anemia. Biomed Res Int. 2018;2018:6067583. doi:10.1155/2018/6067583

24.      Piecuch J, Mertas A, Nowowiejska-Wiewiora A, Zurawel R, Gregorczyn S, Czuba Z, et al. The relationship between the rheological behavior of RBCs and angiogenesis in the morbidly obese. Clin Hemorheol Microcirc. 2019;71(1):95-102. doi:10.3233/CH-180420

25.      Tai YH, Wu HL, Chu YH, Huang CH, Ho ST, Lin TC, et al. Vitamin C supplementation attenuates oxidative stress and improves erythrocyte deformability in cardiac surgery with cardiopulmonary bypass. Chin J Physiol. 2022;65(5):241-9. doi:10.4103/0304-4920.358234


 

 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.