Archive \ Volume.14 2023 Issue 2

Therapeutic Effect of Resveratrol and Gamma-GlutamylCysteine in Azathioprine Drug-Induced Hepatotoxicity

, ,

Abstract

The purpose of the current literature is to examine the protective properties of resveratrol (RSV) and gamma-glutamylcysteine (γ-GC) against hepatic injury induced by Azathioprine (AZA) that may have a favorable impact on using resveratrol and/ or gamma-glutamylcysteine with immunosuppressant drugs therapy. The study duration was 4 weeks; fifty Male Wister Albino Rats were classified into 5 groups: control group: and rats were orally treated with normal saline. AZA group, Rats were taken AZA orally at 10 mg/kg. RSV group, rats had oral administration of AZA along with IP injection of RSV; 8ml/Kg, GC group, rats had oral administration of AZA and γ-GC; 100mg/Kg, combination group, rats had oral administration of AZA with IP injection of RSV; 8ml/Kg and γ-GC; 100mg/Kg after 2 h post-injection for 4 weeks.

The results indicate that AZA treatment increases alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, decreases antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) and depleted hepatic microRNA-122 (miR-122) referred to hepatic injury. Administration of RSV/ γ-GC separately or together modulates levels of liver enzymes and protective hepatic tissue. γ-GC reduced the degree of histological hepatic damage in rats. The results reveal that co-administration of RSV and/or γ-GC can reduce immunosuppressant drug hepatotoxicity.


Downloads: 43
Views: 97

How to cite:
Vancouver
Almutairi HS, Tashkandi MA, Yousef JM. Therapeutic Effect of Resveratrol and Gamma-GlutamylCysteine in Azathioprine Drug-Induced Hepatotoxicity. Arch Pharm Pract. 2023;14(2):92-8. https://doi.org/10.51847/Wp8C0lISJp
APA
Almutairi, H. S., Tashkandi, M. A., & Yousef, J. M. (2023). Therapeutic Effect of Resveratrol and Gamma-GlutamylCysteine in Azathioprine Drug-Induced Hepatotoxicity. Archives of Pharmacy Practice, 14(2), 92-98. https://doi.org/10.51847/Wp8C0lISJp

Download Citation
References

1.        Alamri ZZ. The role of liver in metabolism: an updated review with physiological emphasis. Int J Basic Clin Pharmacol. 2018;7(11):1-6.

2.        Weaver RJ, Blomme EA, Chadwick AE, Copple IM, Gerets HH, Goldring CE, et al. Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Disccov. 2020;19(2):131-48.

3.        Nguyen AL, Sparrow MP. Evolving role of thiopurines in inflammatory bowel disease in the era of biologics and new small molecules. Dig Dis Sci. 2021;66(10):3250-62.

4.        Simsek M, Meijer B, Mulder CJ, van Bodegraven AA, de Boer NK. Analytical pitfalls of therapeutic drug monitoring of thiopurines in patients with inflammatory bowel disease. Ther Drug Monit. 2017;39(6):584.

5.        Beswick L, Friedman AB, Sparrow MP. The role of thiopurine metabolite monitoring in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol. 2014;8(4):383-92.

6.        Gilissen LP, Derijks LJ, Bos LP, Bus PJ, Hooymans PM, Engels LG. Therapeutic drug monitoring in patients with inflammatory bowel disease and established azathioprine therapy. Clin Drug Investig. 2004;24(8):479-86. doi:10.2165/00044011-200424080-00006

7.        Misdaq M, Ziegler S, von Ahsen N, Oellerich M, Asif AR. Thiopurines induce oxidative stress in T-lymphocytes: a proteomic approach. Mediators Inflamm. 2015:1-14.

8.        Chouchana L, Narjoz C, Beaune P, Loriot M, Roblin X. The benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther. 2012;35(1):15-36.

9.        Reynolds NJ, Sinha A, Elias MS, Meggitt SJ. Translating translation into patient benefit for atopic eczema. Br J Dermatol. 2016;175:8-12.

10.      Izzo C, Annunziata M, Melara G, Sciorio R, Dallio M, Masarone M, et al. The role of resveratrol in liver disease: A comprehensive review from in vitro to clinical trials. Nutrients. 2021;13(3):933.

11.      Meng X, Zhou J, Zhao C, Gan R, Li H. Health benefits and molecular mechanisms of resveratrol: A narrative review. Foods. 2020;9(3):340.

12.      Chandler SD, Zarka MH, Babu SV, Suhas YS, Reddy KR, Bridge WJ. Safety assessment of gamma-glutamylcysteine sodium salt. Regul Toxicol Pharmacol. 2012;64(1):17-25.

13.      Hewson CK, Capraro A, Wong SL, Pandzic E, Zhong L, Fernando BS, et al. Novel Antioxidant Therapy with the Immediate Precursor to Glutathione, γ-Glutamylcysteine (GGC), Ameliorates LPS-Induced Cellular Stress in In Vitro 3D-Differentiated Airway Model from Primary Cystic Fibrosis Human Bronchial Cells. Antioxidants. 2020;9(12):1204.

14.      Quintana-Cabrera R, Fernandez-Fernandez S, Bobo-Jimenez V, Escobar J, Sastre J, Almeida A, et al. γ-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nat Commun. 2012;3(1):1-8.

15.      Ajayi A, Yama O, Adebajo A, Isah K, Adefisan EI. The hepatoprotective properties of methanolic extract of Garcinia kola administration on azathioprine-induced liver toxicity of adult sprague-dawley rats. J Hum Genet Genomic Med. 2018;1(1):1-8.

16.      Ramalingam A, Santhanathas T, Shaukat Ali S, Zainalabidin S. Resveratrol supplementation protects against nicotine-induced kidney injury. Int J Environ Res Public Health. 2019;16(22):4445.

17.      Liu Y, Chen Z, Li B, Yao H, Zarka M, Welch J, et al. Supplementation with γ-glutamylcysteine (γ-GC) lessens oxidative stress, brain inflammation and amyloid pathology and improves spatial memory in a murine model of AD. Neurochem Int. 2021;144:104931.

18.      Ghouri N, Preiss D, Sattar N. Liver enzymes, nonalcoholic fatty liver disease, and incident cardiovascular disease: a narrative review and clinical perspective of prospective data. Hepatology. 2010;52(3):1156-61.

19.      Muriana F, Alvarez-Ossorio MC, Relimpio AM. Purification and characterization of aspartate aminotransferase from the halophile archaebacterium Haloferax mediterranei. Biochem J. 1991;278(1):49-154.

20.      Borgstahl GE, Parge HE, Hickey MJ, Johnson MJ, Boissinot M, Hallewell RA, et al. Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. Biochemistry. 1996;35(14):4287-97.

21.      Babusikova E, Jesenak M, Evinova A, Banovcin P, Dobrota D. Frequency of polymorphism-262 c/t in catalase gene and oxidative damage in Slovak children with bronchial asthma. Arch Bronconeumol (English Edition). 2013;49(12):507-12.

22.      Park H, Jo W, Choi H, Jang S, Ryu J, Lee H, et al. Time-course changes in the expression levels of miR-122, -155, and -21 as markers of liver cell damage, inflammation, and regeneration in acetaminophen-induced liver injury in rats. J Vet Sci. 2016;17(1):45-51.

23.      Hesham A, Autifi MA, Mariee AD. Green tea (Camellia sinensis) extract protects against azathioprine-induced hepatotoxicity and neutrophil infiltration in rats. Asian J Tradit Med. 2010;5(1):1-11.

24.      Liu Z, Que S, Xu J, Peng T. Alanine aminotransferase-old biomarker and new concept: a review. Int J Med Sci. 2014;11(9):925.

25.      Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S. The current state of serum biomarkers of hepatotoxicity. Toxicology. 2008;245(3):194-205.

26.      Schomaker S, Warner R, Bock J, Johnson K, Potter D, Van Winkle J, et al. Assessment of emerging biomarkers of liver injury in human subjects. Toxicol Sci. 2013;132(2):276-83.

27.      Raza M, Ahmad M, Gado A, Al-Shabanah OA. A comparison of hepatoprotective activities of aminoguanidine and N-acetylcysteine in rat against the toxic damage induced by azathioprine. Comp Biochem Physiol Part C: Toxicol Pharmacol. 2003;134(4):451-6.

28.      Abdu SB, Al-Bogami FM. Influence of resveratrol on liver fibrosis induced by dimethylnitrosamine in male rats. Saudi J Biol Sci. 2019;26(1):201-9.

29.      Hosseini S, Ebrahimi A, Bagheri F, Emami Y, Esmaeilzadeh E, Azarpira N, et al. Effect of resveratrol on thioacetamide-induced liver damage in rat models. Hepat Mon. 2020;20(7):1-7.

30.      Ji G, Wang Y, Deng Y, Li X, Jiang Z. Resveratrol ameliorates hepatic steatosis and inflammation in methionine/choline-deficient diet-induced steatohepatitis through regulating autophagy. Lipids Health Dis. 2015;14(1):1-9.

31.      Seif el-Din SHS, El-Lakkany NM, Salem MB, Hammam OA, Saleh S, Botros SS. Resveratrol mitigates hepatic injury in rats by regulating oxidative stress, nuclear factor-kappa B, and apoptosis. J Adv Pharm Technol Res. 2016;7(3):99.

32.      Salama SA, Al-Harbi MS, Abdel-Bakky MS, Omar HA. Glutamyl cysteine dipeptide suppresses ferritin expression and alleviates liver injury in iron-overload rat model. Biochimie. 2015;115:203-11.

33.      Salama SA, Arab HH, Hassan MH, Maghrabi IA. Cadmium-induced hepatocellular injury: modulatory effects of γ-glutamyl cysteine on the biomarkers of inflammation, DNA damage, and apoptotic cell death. J Trace Element Med Biol. 2019;52:4-82.

34.      Ntamo Y, Ziqubu K, Chellan N, Nkambule BB, Nyambuya TM, Mazibuko-Mbeje SE, et al. Drug-induced liver injury: clinical evidence of N-acetyl cysteine protective effects. Oxid Med Cell Longev. 2021;2021. doi:10.1155/2021/3320325

35.      He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017;44(2):532-53.

36.      Scibior D, Czeczot H. Catalase: structure, properties, functions. Postepy Hig Med Dosw (Online). 2006;60:70-180.

37.      Maruf AA, Wan L, O’Brien PJ. Evaluation of azathioprine-induced cytotoxicity in an in vitro rat hepatocyte system. BioMed Res Int. 2014:1-7.

38.      Hussein SA, Abdel Aal SAL, El-Aziem A, Bader M, EL Said HF. Ameliorating role of resveratrol on biochemical changes in experimentallyinduced liver fibrosis in rats. Benha Vet Med J. 2017;33(2):211-23.

39.      Otsuka M, Kishikawa T, Yoshikawa T, Yamagami M, Ohno M, Takata A, et al. MicroRNAs and liver disease. J Human Gen. 2017;62(1):75-80.

40.      Chang Y, Han J, Kang SM, Jeong SW, Ryu T, Park HS, et al. Clinical impact of serum exosomal microRNA in liver fibrosis. Plos One. 2021;16(9):e0255672.

41.      Munakata C, Fuchigami Y, Hiroishi S, Haraguchi A, Hagimori M, Enomoto H, et al. Evaluation of miR-122 to predict high dose acetaminophen-induced liver injury in mice: the combination uses of 5-fluorouracil. Biol Pharm Bull. 2018;41(11):1732-5.

42.      Teksoy O, Sahinturk V, Cengiz M, İnal B, Ayhancı A. The Protective Effects of Silymarin on Thioacetamide-Induced Liver Damage: Measurement of miR-122, miR-192, and miR-194 Levels. Appl Biochem Biotechnol. 2020;191(2):528-39.

43.      Baselga-Escudero L, Blade C, Ribas-Latre A, Casanova E, Suarez M, Torres JL, et al. Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells. Nucleic Acids Res. 2013;42(2):882-92.

44.      Zhou Y, Chen K, He L, Xia Y, Dai W, Wang F, et al. The protective effect of resveratrol on concanavalin-A-induced acute hepatic injury in mice. Gastroenterol Res Pract. 2015:1-11.

45.      Yang Y, Li L, Hang Q, Fang Y, Dong X, Cao P, et al. γ-glutamylcysteine exhibits anti-inflammatory effects by increasing cellular glutathione level. Redox Biol. 2019;20:157-66.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.