Archive \ Volume.12 2021 Issue 3

Vanadium Content of the Normal Human Prostate Gland: A Systematic Review


Abstract

Human prostate gland is subject to various disorders. The etiology and pathogenesis of these diseases are not still well comprehended. Furthermore, despite technological developments, the differential diagnosis of prostate disorders has become progressively more intricate and argumentative. It is proposed that the vanadium (V) extent in prostatic tissue has a significant role in prostatic carcinogenesis and its measurement can be helpful as a cancer biomarker. These suggestions promoted more detailed studies of the V content in the prostatic tissue of healthy subjects. By systematic analysis of the published data for V content, this study analyzed the prostatic tissue of “normal” glands. This evaluation reviewed 2127 studies, all of which were published in the years from 1921 to 2020, and was located by searching the databases PubMed, Scopus, ELSEVIER-EMBASE, Cochrane Library, and the Web of Science. The articles were analyzed and “Median of Means” and “Range of Means” were used to investigate the heterogeneity of the measured V content in prostates of apparently healthy men. The objective analysis was performed on data from the 17 studies, which included 664 subjects. It was found that the range of means of prostatic V content reported in the literature for “normal” gland differs widely from <0.010 mg/kg to 7.0 mg/kg with a median of means <0.034 mg/kg on a wet mass basis. Because of the small sample size and high data heterogeneity, we recommend that other primary studies are performed.



How to cite:
Vancouver
Zaichick V. Vanadium Content of the Normal Human Prostate Gland: A Systematic Review. Arch Pharm Pract. 2021;12(3):15-21. https://doi.org/10.51847/GTsA5lvcGW
APA
Zaichick, V. (2021). Vanadium Content of the Normal Human Prostate Gland: A Systematic Review. Archives of Pharmacy Practice, 12(3), 15-21. https://doi.org/10.51847/GTsA5lvcGW

Download Citation
References

1.        Nickel JC. Prostatitis. Can Uro l Assoc J. 2011;5(5):306-15.

2.        Lim KB. Epidemiology of clinical benign prostatic hyperplasia. Asian J Urol. 2017;4(3):148-51.

3.        Rawla P. Epidemiology of Prostate Cancer. World J Oncol. 2019;10(2):63-89.

4.        Said MA, Abdoon AS, Aziz SA, Shams G, Elattar SR, El Nabtity SM. Prostatic Histopathologic and Electron Microscopic Changes Following Intraperitoneal Injection of Gold Nanorods to Male Albino Rats. Int J Pharm Res Allied Sci. 2019;8(3):155-63.

5.        Tripathy R, Athulya A, Otta SP. Open Label Single-Arm Clinical Trial with Earvaru Beeja Kalka in the Management of Benign Prostatic Hyperplasia. Int J Pharm Phytopharmacol Res. 2020;10(4):86-90.

6.        Avisyn AP, Dunchik VN, Zhavoronkov AA, Zaichick VE, Sviridova TV. Histological structure of the prostate and content of zinc in it during various age period. Archiv Anatomy, Gistology, and Ebriology (Leningrad). 1981;81(11):76-83.

7.        Zaichick V. INAA and EDXRF applications in the age dynamics assessment of Zn content and distribution in the normal human prostate. J Radioanal Nucl Chem. 2004;262(1):229-34.

8.        Zaichick V, Zaichick S. The effect of age on Br, Ca, Cl, K, Mg, Mn, and Na mass fraction in pediatric and young adult prostate glands investigated by neutron activation analysis. J Appl Radiat Isot. 2013;82:145-51.

9.        Zaichick V, Zaichick S. INAA application in the assessment of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn mass fraction in pediatric and young adult prostate glands. J Radioanal Nucl Chem. 2013; 298(3):1559-66.

10.      Zaichick V, Zaichick S. NAA-SLR and ICP-AES application in the assessment of mass fraction of 19 chemical elements in pediatric and young adult prostate glands. Biol Trace Elem Res. 2013;156(1):357-66.

11.      Zaichick V, Zaichick S. Use of neutron activation analysis and inductively coupled plasma mass spectrometry for the determination of trace elements in pediatric and young adult prostate. Am J Analyt Chem. 2013;4(12):696-706.

12.      Zaichick V, Zaichick S. Relations of bromine, iron, rubidium, strontium, and zinc content to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. Biol Trace Elem Res. 2014;157(3):195-204.

13.      Zaichick V, Zaichick S. Relations of the neutron activation analysis data to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. Adv Biomed Sci Eng. 2014;1(1):26-42.

14.      Zaichick V, Zaichick S. Relations of the Al, B, Ba, Br, Ca, Cl, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, and Zn mass fractions to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. BioMetals. 2014;27(2):333-48.

15.      Zaichick V, Zaichick S. The distribution of 54 trace elements including zinc in pediatric and nonhyperplastic young adult prostate gland tissues. J Clin Lab Invest Updates. 2014;2(1):1-15.

16.      Zaichick V, Zaichick S. Androgen-dependent chemical elements of prostate gland. Androl Gynecol: Curr Res. 2014;2:2. 

17.      Zaichick V, Zaichick S. Differences and relationships between morphometric parameters and zinc content in nonhyperplastic and hyperplastic prostate glands. Br J Med Med Res. 2015;8(8):92-706.

18.      Schwartz MK. Role of trace elements in cancer. Cancer Res. 1975;35:3481-7.

19.      Zaichick V, Zaichick S. Role of zinc in prostate cancerogenesis. In Mengen und Spurenelemente. 19. Arbeitstagung. Friedrich-Schiller-Universitat, Jena; 1999. 104-15 pp.

20.      Zaichick V, Zaichick S, Wynchank S. Intracellular zinc excess as one of the main factors in the etiology of prostate cancer. J Anal Oncol. 2016;5(3):124-31.

21.      Zaichick V, Zaichick S, Rossmann M. Intracellular calcium excess as one of the main factors in the etiology of prostate cancer. AIMS Mol Sci. 2016;3(4):635-47.

22.      Fukuda H, Ebara M, Yamada H, Arimoto M, Okabe S, Obu M, et al. Trace elements and cancer. Japan Med Assoc J. 2004;47(8):391-5.

23.      Dunchik V, Zherbin E, Zaichick V, Leonov A, Sviridova T. Method for differential diagnostics of prostate malignant and benign tumours. Russian patent (Author’s Certificate No 764660, priority of invention 27.10.1977). Discoveries, Inventions, Commercial Models, Trade Marks. 1980;35:13.

24.      Zaichick V, Sviridova T, Zaichick S. Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol. 1997;29(5):565-74.

25.      Zaichick V, Sviridova T, Zaichick S. Zinc in human prostate gland: normal, hyperplastic and cancerous. J Radioanal Nucl Chem. 1997;217:157-61.

26.      Zaichick S, Zaichick V. Trace elements of normal, benign hypertrophic and cancerous tissues of the human prostate gland investigated by neutron activation analysis. J Appl Radiat Isot. 2012;70(1):81-7.

27.      Zaichick V, Zaichick S. Ratios of selected chemical element contents in prostatic tissue as markers of malignancy. Hematol Med Oncol. 2016;1(2):1-8.

28.      Zaichick V, Zaichick S. Trace element levels in prostate gland as carcinoma’s markers. J Cancer Ther. 2017;8(2):131-45.

29.      Zaichick V, Zaichick S. Ratios of Zn/trace element contents in prostate gland as carcinoma’s markers. Cancer Rep Rev. 2017;1(1):1-7.

30.      Zakutinsky DI, Parfyenov YuD, Selivanova LN. Data book on the radioactive isotopes toxicology. State Publishing House of Medical Literature, Moscow; 1962.

31.      Tipton IH, Cook MJ. Trace elements in human tissue. Part II. Adult subjects from the United States. Health Phys. 1963;9(2):103-45.

32.      Banaś A, Kwiatek WM, Zając W. Trace element analysis of tissue section by means of synchrotron radiation: the use of GNUPLOT for SPIXE spectra analysis. J Alloys Compd. 2001;328(1-2):135-8.

33.      Iyengar GV. Reevaluation of the trace element content in reference men. Radiat Phys Chem. 1998;51(4-6):545-60.

34.      Altamirano‐Lozano M, Alvarez‐Barrera L, Basurto‐Alcántara F, Valverde M, Rojas E. Reprotoxic and genotoxic studies of vanadium pentoxide in male mice. Teratog Carcinog Mutagen. 1996;16(1):7-17.

35.      Gruzewska K, Michno A, Pawelczyk T, Bielarczyk H. Essentiality and toxicity of vanadium supplements in health and pathology. J Physiol Pharmacol. 2014;65(5):603-11.

36.      Wilk A, Szypulska-Koziarska D, Wiszniewska B. The toxicity of vanadium on gastrointestinal, urinary and reproductive system, and its influence on fertility and fetuses malformations. Postepy Hig Med Dosw. 2017;71:850-9.

37.      Gómez-Tomás A, Pumarega J, Alguacil J, Amaral AFS, Malats N, Pallarès N, et al. Concentrations of trace elements and KRAS mutations in pancreatic ductal adenocarcinoma. Environ Mol Mutagen. 2019;60(8):693-703.

38.      Arsenide G, Phosphide I, Pentoxide V.  IARC, International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Cobalt in Hard Metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide. Lyon: France; 2003. 86 p.

39.      Zaichick V. Medical elementology as a new scientific discipline. J Radioanal Nucl Chem. 2006;269(2):303-9.

40.      Hunter P. A toxic brew we cannot live without. Micronutrients give insights into the interplay between geochemistry and evolutionary biology. EMBO Rep. 2008;9(1):15-8.

41.      López-Alonso M. Trace minerals and livestock: Not too much not too little. Int Sch Res Notices. 2012; 2012: Article ID 704825.

42.      Kwiatek WM, Banas A, Gajda M, Gałka M, Pawlicki B, Falkenberg G, et al. Cancerous tissues analyzed by SRIXE. J. Alloys Compd. 2005;401(1-2):173-7.

43.      Zaichick V, Nosenko S, Moskvina I. The effect of age on 12 chemical element contents in intact prostate of adult men investigated by inductively coupled plasma atomic emission spectrometry. Biol Trace Elem Res. 2012;147(1):49-58.

44.      Zaichick V, Zaichick S. Determination of trace elements in adults and geriatric prostate combining neutron activation with inductively coupled plasma atomic emission spectrometry. Open J Biochem. 2014;1(2):16-33.

45.      Zaichick V. The Variation with Age of 67 Macro- and microelement contents in nonhyperplastic prostate glands of adult and elderly males investigated by nuclear analytical and related methods. Biol Trace Elem Res. 2015;168(1):44-60.

46.      Zaichick V, Zaichick S. Age-related changes in concentration and histological distribution of 18 chemical elements in nonhyperplastic prostate of adults. World J Pharm Med Res. 2016;2(4):5-18.

47.      Zaichick V, Zaichick S. The comparison between the contents and interrelationships of 17 chemical elements in normal and cancerous prostate gland. JPS Open Access. 2016;1(1):1-10.

48.      Zaichick V, Zaichick S. Prostatic Tissue Level of Some Major and Trace Elements in Patients with BPH. J J Nephro Urol. 2016;3(1):1-10.

49.      Zaichick V, Zaichick S. Distinguishing malignant from benign prostate using content of 17 chemical elements in prostatic tissue. Integr Cancer Sci Therap. 2016;3(5):579-87.

50.      Zaichick V, Zaichick S. Chemical element contents in normal and benign hyperplastic prostate. Ann Mens Health Wellness. 2017;1(2):1006.

51.      Zaichick V. Differences between 66 Chemical Element Contents in Normal and Cancerous Prostate. J Anal Oncol. 2017;6(1):37-56.

52.      Zaichick V, Zaichick S. Comparison of 66 chemical element contents in normal and benign hyperplastic prostate. Asian J Urol. 2019;6(3):275-89.

53.      Isaacs JT. Prostatic structure and function in relation to the etiology of prostatic cancer. Prostate. 1983;4(4):351-66.

54.      Leissner KM, Fielkegard B, Tisell LE. Concentration and content of zinc in human prostate. Invest Urol. 1980;18(1):32-5.

55.      Woodard HQ, White DR. The composition of body tissues. Br J Radiol. 1986;59(708):1209-18.

56.      Arnold WN, Thrasher JB. Selenium concentration in the prostate. Biol Trace Elem Res. 2003;91(3):277-80.

57.      Schroeder HA, Nason AP, Tipton IH, Balassa JJ. Essential trace metals in man: Zinc. Relation to environmental cadmium. J Chron Dis. 1967;20(4):179-210.

58.      Saltzman BE, Gross SB, Yeager DW, Meiners BG, Gartside PS. Total body burdens and tissue concentrations of lead, cadmium, copper, zinc, and ash in 55 human cadavers. Environ Res. 1990;52(2):126-45.

59.      Zaichick V. Sampling, sample storage and preparation of biomaterials for INAA in clinical medicine, occupational and environmental health. In Harmonization of Health-Related Environmental Measurements Using Nuclear and Isotopic Techniques. IAEA, Vienna; 1997. 123-33 pp.

60.      Zaichick V. Losses of chemical elements in biological samples under the dry ashing process. Trace Elem Med. 2004; 5(3):17-22.

61.      Vernadsky VI. Living matter, Nauka, Moscow, 1978.

62.      Zaichick V, Ermidou-Pollet S, Pollet S. Medical elementology: a new scientific discipline. Trace Elem Electroly. 2007;24(2):69-74.

63.      Nielsen FH, Uthus EO. The essentiality and metabolism of vanadium. In Vanadium in Biological Systems, N.D. Chasteen (ed) Springer, Dordrecht. 1990:51-62.

64.      Anke M, Illing-Günther H, Gürtler H, Holzinger S, Jaritz M, Anke S, et al. Vanadium-An essential element for animals and humans? In Trace Elements in Man and Animals 10, A.M. Roussel, R.A. Anderson, A.E. Favier (eds).  Springer: New York; 2002. 221-5 pp.

65.      Ścibior A, Pietrzyk L, Plewa Z, Skiba A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J Trace Elem Med Biol. 2020;61:126508.

66.      Lourenssen K, Williams J, Ahmadpour F, Clemmer R, Tasnim S. Vanadium redox flow batteries: A comprehensive review. J Energy Storage. 2019;25(4):100844.

67.      Wu C, Feng F, Xie Y. Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem Soc Rev. 2013;42(12):5157-83.

68.      Kianfar E. Recent advances in synthesis, properties, and applications of vanadium oxide nanotube. Microchem J. 2019;145:966-78.

69.      Heinemann G, Fichtl B, Vogt W. Pharmacokinetics of vanadium in humans after intravenous administration of a vanadium containing albumin solution. Br J Clin Pharmacol. 2003;55(3):241-5.

70.      Barceloux DG, Barceloux D. Vanadium. J Toxicol: Clin Toxicol. 1999;37(2):265-78.

71.      Smith DM, Pickering RM, Lewith GT. A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. QJM. 2008;101(5):351-8.

72.      Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coordination Chemistry Reviews  2014; 301, Available from: https://www.researchgate.net/publication/280714545_Vanadium_compounds_in_medicine.

73.      Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol Trace Elem Res. 2019;188(1):68-98.

74.      Catalani S, Stea S, Beraudi A, Gilberti ME, Bordini B, Apostoli P. Vanadium release in whole blood, serum and urine of patients implanted with a titanium alloy hip prosthesis. Clin Toxicol. 2013;51(7):550-6.

75.      Kirmanidou Y, Sidira M, Drosou ME, Bennani V, Bakopoulou A, Tsouknidas A, et al. New Ti-alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: A review. Biomed Res Int. 2016; 2016:2908570.

76.      Engelhart S, Segal RJ. Allergic reaction to vanadium causes a diffuse eczematous eruption and titanium alloy orthopedic implant failure. Cutis. 2017;99(4):245-9.

77.      Naser LR, Salma AR. Vanadium in therapy and toxicity; mini-review and recommendation of further study. MOJ Bioequiv Availab. 2017;3(4):105-6.

78.      Das S, Chatterjee M, Janarthan M, Ramachandran H, Chatterjee M. Vanadium in cancer prevention. In Vanadium: Biochemical and Molecular Biological Approaches, H. Michibata (ed).  Springer; 2012, Chapter 8. 163-85 pp.

79.      Myron DR, Zimmerman TJ, Shuler TR, Klevay LM, Lee DE, Nielsen FH. Intake of nickel and vanadium by humans. A survey of selected diets. Am J Clin Nutr. 1978;31(3):527-31.

80.      WHO. Vanadium. In Air Quality Guidelines. 2nd ed. Regional Office for Europe, Copenhagen, Denmark, 2000, Chapter 6.12, 1-8 pp.

81.      Russo R, Sciacca S, La Milia DI, Poscia A, Moscato U. Vanadium in drinking water: toxic or therapeutic?! Systematic literature review and analysis of the population exposure in an Italian volcanic region. Eur J Public Health. 2014; 24(Supplement 2).

82.      Howd RA. Memorandum: Proposed notification level for vanadium. Office of Environmental Health Hazard Assessment, USA. 2000.

83.      Kretzschmar JG, Cosemans G. Heavy metal levels in Belgium: a five-year survey. Sci Total Environ. 1980;14(1):85-97.

84.      Rehder D. Vanadium. Its Role for Humans. In Interrelations between Essential Metal Ions and Human Diseases, A. Sigel, H. Sigel, R. Sigel (eds)  Metal Ions in Life Sciences, vol 13. Springer, Dordrecht; 2013. 139-69 pp.

85.      Rehder D. Implications of vanadium in technical applications and pharmaceutical issues. Inorganica Chim Acta. 2017;455:378-89.

86.      Byrne AR, Kosta L. Vanadium in foods and in human body fluids and tissues. Sci Total Environ. 1978;10(1):17-30.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.