Archive \ Volume.14 2023 Issue 4

Climate and Cultivar of Tomato (Licopersicum esculentum L.) Affect the Lycopene Contents

, , ,

Abstract

The development and metabolism of tomato plants are influenced by climate and genetic diversity. However, it is still infrequently investigated how these two factors affect it. As a result, this study demonstrates that the lycopene concentration of tomato plants is affected by the environment and variances in tomato plant types. The Gustavo Cultivar and the Ros Cultivar of tomato plants were used in this study. The two types came from two separate climate zones in Central Sulawesi Province, Indonesia: the Napu Region and the Sigi Region. The Napu region has a temperate climate, while the Sigi region enjoys hot weather. Tomatoes from two distinct types and areas were then removed and tested for lycopene concentration with a 472 nm UV-Vis spectrophotometer. The results reveal that temperature and cultivar changes have a substantial effect on the lycopene concentration of the Ros Cultivar tomatoes. This climate variation, however, did not occur in the Gustavo Cultivar. The Ros Cultivar had the highest lycopene content. The warmer temperature raised the level of lycopene in the Ros Cultivar but not in the Gustavo Cultivar.


Downloads: 58
Views: 90

How to cite:
Vancouver
Astija A, Febriani VI, Alibasyah L, Isnainar I. Climate and Cultivar of Tomato (Licopersicum esculentum L.) Affect the Lycopene Contents. Arch Pharm Pract. 2023;14(4):39-43. https://doi.org/10.51847/af4HYDNEGL
APA
Astija, A., Febriani, V. I., Alibasyah, L., & Isnainar, I. (2023). Climate and Cultivar of Tomato (Licopersicum esculentum L.) Affect the Lycopene Contents. Archives of Pharmacy Practice, 14(4), 39-43. https://doi.org/10.51847/af4HYDNEGL

Download Citation
References

1.        Ali MY, Sina AA, Khandker SS, Neesa L, Tanvir EM, Kabir A, et al. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods. 2020;10(1):45. doi:10.3390/foods10010045

2.        Gonzali S, Perata P. Anthocyanins from purple tomatoes as novel antioxidants to promote human health. Antioxidants. 2020;9(10):1017. doi:10.3390/antiox9101017

3.        Elbadrawy E, Sello A. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab J Chem. 2016;9:S1010-8. doi:10.1016/j.arabjc.2011.11.011

4.        Rivero AG, Keutgen AJ, Pawelzik E. Antioxidant properties of tomato fruit (Lycopersicon esculentum Mill.) as affected by cultivar and processing method. Horticulturae. 2022;8(6):547. doi:10.3390/horticulturae8060547

5.        Przybylska S, Tokarczyk G. Lycopene in the prevention of cardiovascular diseases. Int J Mol Sci. 2022;23(4):1957. doi:10.3390/ijms23041957

6.        Moran NE, Thomas-Ahner JM, Wan L, Zuniga KE, Erdman Jr JW, Clinton SK. Tomatoes, lycopene, and prostate cancer: what have we learned from experimental models?. J Nutr. 2022;152(6):1381-403. doi:10.1093/jn/nxac066

7.        Palozza P, Simone RE, Catalano A, Mele MC. Tomato lycopene and lung cancer prevention: from experimental to human studies. Cancers. 2011;3(2):2333-57. doi:10.3390/cancers3022333

8.        Walallawita US, Wolber FM, Ziv-Gal A, Kruger MC, Heyes JA. Potential role of lycopene in the prevention of postmenopausal bone loss: Evidence from molecular to clinical studies. Int J Mol Sci. 2020;21(19):7119. doi:10.3390/ijms21197119

9.        Arfin N, Podder MK, Kabir SR, Asaduzzaman AK, Hasan I. Antibacterial, antifungal and in vivo anticancer activities of chitin-binding lectins from Tomato (Solanum lycopersicum) fruits. Arab J Chem. 2022;15(8):104001. doi:10.1016/j.arabjc.2022.104001

10.      Kashyap A, Jiménez‐Jiménez ÁL, Zhang W, Capellades M, Srinivasan S, Laromaine A, et al. Induced ligno‐suberin vascular coating and tyramine‐derived hydroxycinnamic acid amides restrict Ralstonia solanacearum colonization in resistant tomato. New Phytol. 2022;234(4):1411-29. doi:10.1111/nph.17982

11.      Mellidou I, Koukounaras A, Kostas S, Patelou E, Kanellis AK. Regulation of vitamin C accumulation for improved tomato fruit quality and alleviation of abiotic stress. Genes. 2021;12(5):694. doi:10.3390/genes12050694

12.      Honda M, Kageyama H, Hibino T, Takemura R, Goto M, Fukaya T. Enhanced Z-isomerization of tomato lycopene through the optimal combination of food ingredients. Sci Rep. 2019;9(1):7979. doi:10.1038/s41598-019-44177-4

13.      Mazidi M, Ferns GA, Banach M. A high consumption of tomato and lycopene is associated with a lower risk of cancer mortality: results from a multi-ethnic cohort. Public Health Nutr. 2020;23(9):1569-75. doi:10.1017/S1368980019003227

14.      Kong KW, Khoo HE, Prasad KN, Ismail A, Tan CP, Rajab NF. Revealing the power of the natural red pigment lycopene. Molecules. 2010;15(2):959-87. doi:10.3390/molecules15020959

15.      Xu X, Zhu Y, Ye S, Li S, Xie B, Meng H, et al. Association of Dietary Carrot Intake With Bladder Cancer Risk in a Prospective Cohort of 99,650 Individuals With 12.5 Years of Follow-Up. Front Nutr. 2021;8(13):17629-37. doi:10.3389/fnut.2021.669630

16.      Tilahun S, Seo MH, Jeong CS. Review on factors affecting the quality and antioxidant properties of tomatoes. Afr J Biotechnol. 2017;16(32):1678-87. doi:10.5897/ajb2017.16054

17.      Vijayakumar A, Shaji S, Beena R, Sarada S, Rani TS, Stephen R, et al. High temperature induced changes in quality and yield parameters of tomato (Solanum lycopersicum L.) and similarity coefficients among genotypes using SSR markers. Heliyon. 2021;7(2):e05988. doi:10.1016/j.heliyon.2021.e05988

18.      Kobayashi T, Tabuchi T. Tomato cultivation in a plant factory with artificial light: Effect of UV-A irradiation during the growing period on yield and quality of ripening fruit. Hortic J. 2022;91(1):16-23. doi:10.2503/hortj.UTD-272

19.      Oboulbiga EB, Traore CO, Tarpaga WV, Parkouda C, Sawadogo-Lingani H, Kere-Kando C, et al. Assessment of the content of β-carotene, lycopene and total phenolic of 45 varieties of tomatoes (Solanum lycopersicum L.). J Food Nutr Sci. 2018;6(3):82-9. doi:10.11648/j.jfns.20180603.13

20.      Alsina I, Erdberga I, Duma M, Alksnis R, Dubova L. Changes in greenhouse grown tomatoes metabolite content depending on supplemental light quality. Front Nutr. 2022;9:830186. doi:10.3389/fnut.2022.830186

21.      Baek MW, Choi HR, Yun Jae L, Kang HM, Lee OH, Jeong CS, et al. Preharvest treatment of methyl jasmonate and salicylic acid increase the yield, antioxidant activity and GABA content of tomato. Agronomy. 2021;11(11):2293. doi:10.3390/agronomy11112293

22.      Mun HI, Kwon MC, Lee NR, Son SY, Song DH, Lee CH. Comparing metabolites and functional properties of various tomatoes using mass spectrometry-based metabolomics approach. Front Nutr. 2021;8:659646. doi:10.3389/fnut.2021.659646

23.      Demiray E, Tulek Y, Yilmaz Y. Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT-Food Sci Technol. 2013;50(1):172-6. doi:10.1016/j.lwt.2012.06.001

24.      Ishiwu Charles N, Iwouno JO, Obiegbuna James E, Ezike Tochukwu C. Effect of thermal processing on lycopene, beta-carotene and Vitamin C content of tomato [Var. UC82B]. J Food Nutr Sci. 2014;2(3):87-92. doi:10.11648/j.jfns.20140203.17

25.      Chib A, Gupta N, Bhat A, Anjum N, Yadav G. Role of antioxidants in food. Int J Chem Stud. 2020;8(1):2354-61. doi:10.22271/chemi.2020.v8.i1aj.8621

26.      Antonuccio P, Micali A, Puzzolo D, Romeo C, Vermiglio G, Squadrito V, et al. Nutraceutical effects of lycopene in experimental varicocele: an “in vivo” model to study male infertility. Nutrients. 2020;12(5):1536. doi:10.3390/nu12051536

27.      Iftikhar A, Akhtar MF, Saleem A, Riaz A, Zehravi M, Rahman MH, et al. Comparative potential of zinc sulfate, l-carnitine, lycopene, and coenzyme Q10 on cadmium-induced male infertility. Int J Endocrinol. 2022;2022. doi:10.1155/2022/6266613

28.      Nurdin M, Zainal S. Analysis of APXs and HSPs genes responsible to respond to heat stress in tomato plants cultivated in Central Sulawesi. Jordan J Biol Sci. 2021;14(2):279-83. doi:10.54319/jjbs/140212

29.      Catalá R, Díaz A, Salinas J. 19 Molecular responses to extreme temperatures. Plant Biotechnol Agric: (First Edit). Elsevier Inc. 2006.

30.      Zheng Y, Yang Z, Xu C, Wang L, Huang H, Yang S. The interactive effects of daytime high temperature and humidity on growth and endogenous hormone concentration of tomato seedlings. HortSci. 2020;55(10):1575-83. doi:10.21273/HORTSCI15145-20

31.      Gosselin A, Trudel MJ. Interactions between air and root temperatures on greenhouse tomato: I. Growth, development, and yield. J Am Soc Hortic Sci. 1983;108(6):901-5. doi:10.21273/jashs.108.6.901

32.      Herrera EC, Pérez LA. Effect of the liming on the soil chemical properties and the development of tomato crop in Sucre-Colombia. J Appl Biotechnol Bioeng. 2020;7(2):87-93. doi:10.15406/jabb.2020.07.00220

33.      Setyawati E, Rahayuningsih CK, Haryanto E. Korelasi Kadar Likopen Dengan Aktivitas Antioksidan Pada Buah Semangka (Citrullus Lanatus) Dan Tomat (Lycopersicum Esculentum). Anal Kesehat Sains. 2019;8(2):710-6.

34.      Vela-Hinojosa C, Escalona-Buendía HB, Mendoza-Espinoza JA, Villa-Hernández JM, Lobato-Ortíz R, Rodríguez-Pérez JE, et al. Antioxidant balance and regulation in tomato genotypes of different color. J Am Soc Hortic Sci. 2019;144(1):45-54. doi:10.21273/JASHS04525-18

35.      Lin YP, Liu CY, Chen KY. Assessment of genetic differentiation and linkage disequilibrium in Solanum pimpinellifolium using genome-wide high-density SNP markers. G3: Genes Genom Genet. 2019;9(5):1497-505. doi:10.1534/g3.118.200862


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.