Archive \ Volume.14 2023 Issue 2

Effect of Drugs Based on Silver, Copper, and Zinc Nanoparticles on Skin Wound Healing in Rats

Umar Gadzhimuradovich Omarov, Igor Alexandrovich Nikiforov, Myuryud Alibekovich Alibekov, Diana Arthurovna Kadakoeva, Natalia Vasilyevna Makarenko, Andrey Ivanovich Starodubtsev

Modern medicine cannot do without the use of new technologies, including nanotechnology. They make it possible to achieve significant improvements in the diagnosis and treatment of various diseases, as well as increase the effectiveness of prevention. In particular, in recent years, more and more attention has been paid to the use of silver, zinc, and copper nanoparticles in medicine. They have unique properties, such as antimicrobial, antiviral, and anti-inflammatory effects, which allows them to be used to fight various infections and inflammatory processes. This scientific paper examines the effect of medical treatment of a fresh wound with preparations based on silver nanoparticles and an alloy of copper and zinc in the example of laboratory rats. Visual observation of the wound healing process was carried out, as well as morphological and hematological parameters of blood serum were studied. During the experiment, it was found that the treatment of a fresh wound with a preparation based on silver nanoparticles led to the fastest wound healing. And treatment with a preparation based on copper and zinc alloy nanoparticles significantly reduced the recovery time. The toxicological safety of the use of both drugs has been proven.

Downloads: 7
Views: 15

How to cite:
Omarov UG, Nikiforov IA, Alibekov MA, Kadakoeva DA, Makarenko NV, Starodubtsev AI. Effect of Drugs Based on Silver, Copper, and Zinc Nanoparticles on Skin Wound Healing in Rats. Arch Pharm Pract. 2023;14(2):66-9.
Omarov, U. G., Nikiforov, I. A., Alibekov, M. A., Kadakoeva, D. A., Makarenko, N. V., & Starodubtsev, A. I. (2023). Effect of Drugs Based on Silver, Copper, and Zinc Nanoparticles on Skin Wound Healing in Rats. Archives of Pharmacy Practice, 14(2), 66-69.

Download Citation

1.        Taher SS, Al-Kinani KK, Hammoudi ZM, Mohammed Ghareeb M. Co-surfactant effect of polyethylene glycol 400 on microemulsion using BCS class II model drug. J Adv Pharm Educ Res. 2022;12(1):63-9.

2.        Nakagawa N, Odanaka K, Ohara H, Kisara S. Evaluation of drug information literacy gained through e-learning to prepare students for practical pharmacy experience. J Adv Pharm Educ Res. 2021;11(4):111-5.

3.        Herman TF, Bordoni B. Wound Classification. 2022. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

4.        Shpichka A, Butnaru D, Bezrukov EA, Sukhanov RB, Atala A, Burdukovskii V, et al. Skin tissue regeneration for burn injury. Stem Cell Res Ther. 2019;10(1):94. doi:10.1186/s13287-019-1203-3

5.        Oryan A, Alemzadeh E, Moshiri A. Burn wound healing: present concepts, treatment strategies, and future directions. J Wound Care. 2017;26(1):5-19. doi:10.12968/jowc.2017.26.1.5

6.        Wong She RB, Gibran NS. Burn Wound Bed Management. J Burn Care Res. 2023;44(Suppl_1): S13-S8. doi:10.1093/jbcr/irac128

7.        Palackic A, Jay JW, Duggan RP, Branski LK, Wolf SE, Ansari N, et al. Therapeutic Strategies to Reduce Burn Wound Conversion. Medicina (Kaunas). 2022;58(7):922. doi:10.3390/medicina58070922

8.        Nazareth C, Pereira S. A review on chiral stationary phases for separation of chiral drugs. Int J Pharm Phytopharmacol Res. 2020;10(3):77-91.

9.        Maheswary T, Nurul AA, Fauzi MB. The Insights of Microbes’ Roles in Wound Healing: A Comprehensive Review. Pharmaceutics. 2021;13(7):981. doi:10.3390/pharmaceutics13070981

10.      Daeschlein G. Antimicrobial and antiseptic strategies in wound management. Int Wound J. 2013;10 Suppl 1(Suppl 1):9-14. doi:10.1111/iwj.12175

11.      Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules. 2020;25(1):112. doi:10.3390/molecules25010112

12.      Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules. 2019;25(1):112. doi:10.3390/molecules25010112

13.      Girija AR, Balasubramanian S, Cowin AJ. Nanomaterials-based Drug Delivery Approaches for Wound Healing. Curr Pharm Des. 2022;28(9):711-26. doi:10.2174/1381612828666220328121211

14.      Mendes C, Thirupathi A, Corrêa MEAB, Gu Y, Silveira PCL. The Use of Metallic Nanoparticles in Wound Healing: New Perspectives. Int J Mol Sci. 2022;23(23):15376. doi:10.3390/ijms232315376

15.      Dukueva MZ, Abdullayeva GR, Kagirov GM, Babaev ZR, Shapovalov LO, Danenko JI. Biological Significance and Toxicological Properties of Iron, Selenium, and Iodine. Pharmacophore. 2022;13(4):112-8. doi:10.51847/LYLLukyZLJ

16.      Sergeevna SM, Efimovna LE, Irina K. Pharmaceutical consulation as a basis for drug care continuity. Pharmacophore. 2020;11(4):76-82.

17.      AlRuwaili NS, Mohammad AA, Alnathir HF, Alfeheid MH, Alshammari NN. Illicit Drugs Addiction Among Patients with Chronic Diseases: Simple Review Article. Pharmacophore. 2022;13(3):81-5.

18.      Abbasi E, Milani M, Fekri Aval S, Kouhi M, Akbarzadeh A, Tayefi Nasrabadi H, et al. Silver nanoparticles: Synthesis methods, bio-applications, and properties. Crit Rev Microbiol. 2016;42(2):173-80. doi:10.3109/1040841X.2014.912200

19.      Blinov AV, Nagdalian AA, Povetkin SN, Gvozdenko AA, Verevkina MN, Rzhepakovsky IV, et al. Surface-Oxidized Polymer-Stabilized Silver Nanoparticles as a Covering Component of Suture Materials. Micromachines. 2022;13(7):1105. doi:10.3390/mi13071105

20.      Pino P, Bosco F, Mollea C, Onida B. Antimicrobial Nano-Zinc Oxide Biocomposites for Wound Healing Applications: A Review. Pharmaceutics. 2023;15(3):970. doi:10.3390/pharmaceutics15030970

21.      Batool M, Khurshid S, Qureshi Z, Daoush WM. Adsorption, antimicrobial, and wound healing activities of biosynthesized zinc oxide nanoparticles. Chem Pap. 2021;75:893-907. doi:10.1007/s11696-020-01343-7

22.      Blinov AV, Kachanov MD, Gvozdenko AA, Nagdalian AA, Blinova AA, Rekhman ZA, et al. Synthesis and Characterization of Zinc Oxide Nanoparticles Stabilized with Biopolymers for Application in Wound-Healing Mixed Gels. Gels. 2023;9(1):57. doi:10.3390/gels9010057

23.      Xu VW, Nizami MZI, Yin IX, Yu OY, Lung CYK, Chu CH. Application of Copper Nanoparticles in Dentistry. Nanomaterials. 2022;12(5):805. doi:10.3390/nano12050805

24.      Lyashenko EN, Uzbekova LD, Polovinkina VV, Dorofeeva AK, Ibragimov S-US-u, Tatamov AA, et al. Study of the Embryonic Toxicity of TiO2 and ZrO2 Nanoparticles. Micromachines. 2023;14(2):363. doi:10.3390/mi14020363

25.      Carobene A, Braga F, Roraas T, Sandberg S, Bartlett WA. A systematic review of data on biological variation for alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transferase. Clin Chem Lab Med. 2013;51(10):1997-2007. doi:10.1515/cclm-2013-0096

26.      Díaz Martínez AE, Alcaide Martín MJ, González-Gross M. Basal Values of Biochemical and Hematological Parameters in Elite Athletes. Int J Environ Res Public Health. 2022;19(5):3059. doi:10.3390/ijerph19053059



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.