Archive \ Volume.16 2025 Issue 3

Controlling Biofilm Formation of Foodborne Pathogens Utilizing Probiotics in the Food Industry

, , ,
  1. Microbiology, Faculty of Microbiology, Government College University Lahore (GCUL), Lahore, Pakistan.
  2. Hematology and Bone Marrow Transplantation, Medical Officer, Pakistan Kidney and Liver Institute and Research Center, Lahore, Pakistan.
  3. Microbiology, Institute of Microbiology, Government College University Lahore (GCUL), Lahore, Pakistan.
  4. Research, Research Center, Pakistan Kidney and Liver Institute and Research Center, Lahore, Pakistan.

Abstract

The formation of biofilms by microorganisms on food-contact surfaces poses a significant challenge in the agro-food industry. These biofilms act as protective shelters for harmful bacteria, allowing them to survive harsh food preparation conditions and resist antimicrobial agents, including conventional sanitizers and cleaning agents. Addressing this issue is critical for ensuring food safety and mitigating contamination risks. Probiotics, beneficial microorganisms widely used in food production, have emerged as a promising solution for controlling biofilm formation. Through mechanisms such as displacement, exclusion, and competition, probiotics inhibit the adhesion and subsequent development of biofilms by foodborne pathogens. Recent studies highlight the potential of specific probiotics and their byproducts to disrupt existing biofilms, reducing bacterial resistance and contamination risks. This review synthesizes current research on the application of probiotics in biofilm management, focusing on their mechanisms of action, effectiveness across various food systems, and practical implications for the agro-food sector. The use of probiotics represents a sustainable and innovative strategy to control biofilm formation and enhance food safety. By leveraging their unique properties, the agro-food industry can address challenges associated with biofilm-associated contamination, ensuring safer food production processes.


Downloads: 34
Views: 172

How to cite:
Vancouver
Omer H, Nadeem N, Fatima M, Imtiaz S. Controlling Biofilm Formation of Foodborne Pathogens Utilizing Probiotics in the Food Industry. Arch Pharm Pract. 2025;16(3):10-21. https://doi.org/10.51847/mPV7qLFAr3
APA
Omer, H., Nadeem, N., Fatima, M., & Imtiaz, S. (2025). Controlling Biofilm Formation of Foodborne Pathogens Utilizing Probiotics in the Food Industry. Archives of Pharmacy Practice, 16(3), 10-21. https://doi.org/10.51847/mPV7qLFAr3

Download Citation
References
  1. Almansour AM, Alhadlaq MA, Alzahrani KO, Mukhtar LE, Alharbi AL, Alajel SM. The silent threat: antimicrobial-resistant pathogens in food-producing animals and their impact on public health. Microorganisms. 2023;11(9):2127. doi:10.3390/MICROORGANISMS11092127
  2. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018;81(1):7–11. doi:10.1016/J.JCMA.2017.07.012
  3. Sahoo M, Panigrahi C, Aradwad P. Management strategies emphasizing advanced food processing approaches to mitigate food-borne zoonotic pathogens in food systems. Food Front. 2022;3(4):641–65. doi:10.1002/FFT2.153
  4. Hadawey A, Tassou SA, Chaer I, Sundararajan R. Unwrapped food product display shelf life assessment. Energy Procedia. 2017;123:62–9. doi:10.1016/J.EGYPRO.2017.07.233
  5. Divyashree S, Anjali PG, Somashekaraiah R, Sreenivasa MY. Probiotic properties of Lactobacillus casei – MYSRD 108 and Lactobacillus plantarum-MYSRD 71 with potential antimicrobial activity against Salmonella paratyphi. Biotechnol Rep. 2021;32:e00672. doi:10.1016/J.BTRE.2021.E00672
  6. Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. Biofilms in the food industry: Health aspects and control methods. Front Microbiol. 2018;9(MAY):898. doi:10.3389/FMICB.2018.00898
  7. Net MESM, Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, et al. Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–14. doi:10.1038/nrgastro.2014.66
  8. Zhu T, Yang C, Bao X, Chen F, Guo X. Strategies for controlling biofilm formation in food industry. Grain Oil Sci Technol. 2022;5(4):179-86. doi:10.1016/J.GAOST.2022.06.003
  9. Carvalho FM, Teixeira-Santos R, Mergulhão FJM, Gomes LC. The use of probiotics to fight biofilms in medical devices: a systematic review and meta-analysis. Microorganisms. 2021;9(1):27. doi:10.3390/MICROORGANISMS9010027
  10. Liu X, Yao H, Zhao X, Ge C. Biofilm formation and control of foodborne pathogenic bacteria. Molecules. 2023;28(6):2432. doi:10.3390/molecules28062432
  11. Van Houdt R, Michiels CW. Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol. 2010;109(4):1117-31.
  12. Sadekuzzaman M, Yang S, Mizan MFR, Ha SD. Current and recent advanced strategies for combating biofilms. Compr Rev Food Sci Food Saf. 2015;14(4):491–509. doi:10.1111/1541-4337.12144
  13. Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A. New weapons to fight old enemies: novel strategies for the (bio)control of bacterial biofilms in the food industry. Front Microbiol. 2016;7(OCT):1641. doi:10.3389/FMICB.2016.01641
  14. Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019;17(6):371–82. doi:10.1038/s41579-019-0186-5
  15. Carrascosa C, Raheem D, Ramos F, Saraiva A, Raposo A. Microbial biofilms in the food industry—a comprehensive review. Int J Environ Res Public Health. 2021;18(4):2014. doi:10.3390/IJERPH18042014
  16. Dhivya R, Rajakrishnapriya VC, Sruthi K, Chidanand DV, Sunil CK, Rawson A. Biofilm combating in the food industry: Overview, non-thermal approaches, and mechanisms. J Food Process Preserv. 2022;46(10):e16282. doi:10.1111/JFPP.16282
  17. Olanbiwoninu AA, Popoola BM. Biofilms and their impact on the food industry. Saudi J Biol Sci. 2023;30(2):103523. doi:10.1016/J.SJBS.2022.103523
  18. Tan X, Han Y, Xiao H, Zhou Z. Pediococcus acidilactici inhibit biofilm formation of food-borne pathogens on abiotic surfaces. Trans Tianjin Univ. 2017;23(1):70-7. doi:10.1007/S12209-016-0016-Z
  19. Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. Biomed Res Int. 2014;2014(1):827965. doi:10.1155/2014/827965
  20. Parastan R, Kargar M, Solhjoo K, Kafilzadeh F. Staphylococcus aureus biofilms: structures, antibiotic resistance, inhibition, and vaccines. Gene Rep. 2020;20:100739. doi:10.1016/J.GENREP.2020.100739
  21. Ćwiek K, Korzekwa K, Tabiś A, Bania J, Bugla-Płoskońska G, Wieliczko A. Antimicrobial resistance and biofilm formation capacity of Salmonella enterica serovar Enteritidis strains isolated from poultry and humans in Poland. Pathogens. 2020;9(8):643. doi:10.3390/PATHOGENS9080643
  22. De Abrew Abeysundara P, Dhowlaghar N, Nannapaneni R, Schilling MW, Mahmoud B, Sharma CS, et al. Salmonella enterica growth and biofilm formation in flesh and peel cantaloupe extracts on four food-contact surfaces. Int J Food Microbiol. 2018;280:17–26. doi:10.1016/J.IJFOODMICRO.2018.04.042
  23. Farahani RK, Ehsani P, Ebrahimi-Rad M, Khaledi A. Molecular detection, virulence genes, biofilm formation, and antibiotic resistance of Salmonella enterica serotype Enteritidis isolated from poultry and clinical samples. Jundishapur J Microbiol. 2018;11(10):69504. doi:10.5812/JJM.69504
  24. Chlebicz A, Śliżewska K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: a review. Int J Environ Res Public Health. 2018;15(5):863. doi:10.3390/IJERPH15050863
  25. Klančnik A, Šimunović K, Sterniša M, Ramić D, Smole Možina S, Bucar F. Anti-adhesion activity of phytochemicals to prevent Campylobacter jejuni biofilm formation on abiotic surfaces. Phytochem Rev. 2020;20(1):55-84. doi:10.1007/S11101-020-09669-6
  26. Ban GH, Kang DH. Inactivation of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on cherry tomatoes and oranges by superheated steam. Food Res Int. 2018;112:38-47. doi:10.1016/J.FOODRES.2018.05.069
  27. Weerarathne P, Payne J, Saha J, Kountoupis T, Jadeja R, Jaroni D. Evaluating the efficacy of sodium acid sulfate to reduce Escherichia coli O157:H7 and its biofilms on food-contact surfaces. LWT. 2021;139:110501. doi:10.1016/J.LWT.2020.110501
  28. Disson O, Moura A, Lecuit M. Making sense of the biodiversity and virulence of Listeria monocytogenes. Trends Microbiol. 2021;29(9):811-22. doi:10.1016/J.TIM.2021.01.008
  29. Rodríguez-López P, Rodríguez-Herrera JJ, Vázquez-Sánchez D, Cabo ML. Current knowledge on Listeria monocytogenes biofilms in food-related environments: Incidence, resistance to biocides, ecology, and biocontrol. Foods. 2018;7(6):85. doi:10.3390/FOODS7060085
  30. IFT Scientific Status Summary. Bacteria associated with foodborne diseases. Food Technol. 2004;7(August):1–25.
  31. Crone S, Vives-Flórez M, Kvich L, Saunders AM, Malone M, Nicolaisen MH, et al. The environmental occurrence of pseudomonas aeruginosa. APMIS. 2020;128(3):220-31. doi:10.1111/APM.13010
  32.  Thi MTT, Wibowo D, Rehm BHA. Pseudomonas aeruginosa biofilms. Int J Mol Sci. 2020;21(22):8671. doi:10.3390/IJMS21228671
  33. Merino L, Procura F, Trejo FM, Bueno DJ, Golowczyc MA. Biofilm formation by salmonella sp. in the poultry industry: detection, control and eradication strategies. Food Res Int. 2019;119:530-40. doi:10.1016/J.FOODRES.2017.11.024
  34. Jara J, Pérez-Ramos A, del Solar G, Rodríguez JM, Fernández L, Orgaz B. Role of lactobacillus biofilms in listeria monocytogenes adhesion to glass surfaces. Int J Food Microbiol. 2020;334.
  35. Kıran F, Akoğlu A, Çakır İ. Control of listeria monocytogenes biofilm on industrial surfaces by cell-free extracts of Lactobacillus plantarum. J Food Process Preserv. 2021;45(1). doi:10.1111/JFPP.15042
  36. Kim NN, Kim WJ, Kang SS. Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food Control. 2019;98:274-80. doi:10.1016/J.FOODCONT.2018.11.004
  37. Wang N, Yuan L, Sadiq FA, He G. Inhibitory effect of Lactobacillus plantarum metabolites against biofilm formation by Bacillus licheniformis isolated from milk powder products. Food Control. 2019;106. doi:10.1016/J.FOODCONT.2019.106721
  38. Salman MK, Abuqwider J, Mauriello G. Anti-quorum sensing activity of probiotics: the mechanism and role in food and gut health. Microorganisms. 2023;11(3). doi:10.3390/MICROORGANISMS11030793
  39. Zaib S, Hayat A, Khan I. Probiotics and their beneficial health effects. Mini-Rev Med Chem. 2023;23(1):110–25. doi:10.2174/1389557523666230608163823
  40. Sornsenee P, Chatatikun M, Mitsuwan W, Kongpol K, Kooltheat N, Sohbenalee S, et al. Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduced nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells. PeerJ. 2021;9. doi:10.7717/PEERJ.12586
  41. Cisneros L, Cattelan N, Villalba MI, Rodriguez C, Serra DO, Yantorno O, et al. Lactic acid bacteria biofilms and their ability to mitigate Escherichia coli O157:H7 surface colonization. Lett Appl Microbiol. 2021;73(2):247–56. doi:10.1111/LAM.13509
  42. Toushik SH, Kim K, Ashrafudoulla M, Mizan MFR, Roy PK, Nahar S, et al. Korean kimchi-derived lactic acid bacteria inhibit foodborne pathogenic biofilm growth on seafood and food processing surface materials. Food Control. 2021;129. doi:10.1016/J.FOODCONT.2021.108276
  43. Woo J, Ahn J. Probiotic-mediated competition, exclusion and displacement in biofilm formation by food-borne pathogens. Lett Appl Microbiol. 2013;56(4):307–13. doi:10.1111/LAM.12051
  44. Carvalho FM, Teixeira-Santos R, Mergulhão FJM, Gomes LC. Targeting biofilms in medical devices using probiotic cells: a systematic. AIMS Mater Sci. 2021;8(4):501-23. doi:10.3934/MATERSCI.2021031
  45. Gavrilova E, Anisimova E, Gabdelkhadieva A, Nikitina E, Vafina A, Yarullina D, et al. Newly isolated lactic acid bacteria from silage targeting biofilms of foodborne pathogens during milk fermentation. BMC Microbiol. 2019;19(1). doi:10.1186/S12866-019-1618-0
  46. Ruiz MJ, García MD, Padola NL, Etcheverría AI. Ability of Lactiplantibacillus plantarum to reduce biofilms of pathogens involved in foodborne diseases. Rev Vet. 2022;31(1):48–52. doi:10.30972/VET.3315879
  47. Todorov SD, de Paula OAL, Camargo AC, Lopes DA, Nero LA. The combined effect of bacteriocin produced by Lactobacillus plantarum ST8SH and vancomycin, propolis, or EDTA for controlling biofilm development by Listeria monocytogenes. Rev Argent Microbiol. 2018;50(1):48–55. doi:10.1016/J.RAM.2017.04.011
  48. Liu Y, Bu Y, Li J, Liu Y, Liu A, Gong P, et al. Inhibition activity of plantaricin Q7 produced by lactobacillus plantarum Q7 against listeria monocytogenes and its biofilm. Fermentation. 2022;8(2). doi.org/10.3390/FERMENTATION8020075
  49. Singh N, Kaur R, Singh BP, Rokana N, Goel G, Puniya AK, et al. Impairment of cronobacter sakazakii and listeria monocytogenes biofilms by cell-free preparations of lactobacilli of goat milk origin. Folia Microbiol. 2020;65(1):185–96. doi:10.1007/S12223-019-00721-3
  50. Moradi M, Mardani K, Tajik H. Characterization and application of postbiotics of lactobacillus spp. on listeria monocytogenes in vitro and food models. LWT. 2019;111:457–64. doi:10.1016/J.LWT.2019.05.072
  51. Nataraj BH, Ramesh C, Mallappa RH. Characterization of biosurfactants derived from probiotic lactic acid bacteria against methicillin-resistant and sensitive Staphylococcus aureus isolates. LWT. 2021;151. doi:10.1016/J.LWT.2021.112195
  52. Patel M, Siddiqui AJ, Hamadou WS, Surti M, Awadelkareem AM, Ashraf SA, et al. Inhibition of bacterial adhesion and antibiofilm activities of a glycolipid biosurfactant from Lactobacillus rhamnosus with its physicochemical and functional properties. Antibiotics. 2021;10(12). doi:10.3390/ANTIBIOTICS10121546
  53. Koohestani M, Moradi M, Tajik H, Badali A. Effects of cell-free supernatant of Lactobacillus acidophilus LA5 and Lactobacillus casei 431 against planktonic form and biofilm of Staphylococcus aureus. Vet Res Forum. 2018;9(4):301. doi:10.30466/VRF.2018.33086
  54. Singh N, Sharma C, Gulhane RD, Rokana N, Singh BP, Puniya AK, et al. Inhibitory effects of lactobacilli of goat’s milk origin against growth and biofilm formation by pathogens: An in vitro study. Food Biosci. 2018;22:129–38. doi:10.1016/J.FBIO.2018.02.001
  55. Shokri D, Khorasgani MR, Mohkam M, Fatemi SM, Ghasemi Y, Taheri-Kafrani A. The inhibition effect of lactobacilli against growth and biofilm formation of pseudomonas aeruginosa. Probiotics Antimicrob Proteins. 2018;10(1):34-42. doi:10.1007/S12602-017-9267-9
  56. Aman M, Aneeqha N, Bristi K, Deeksha J, Afza N, Sindhuja V, et al. Lactic acid bacteria inhibit quorum sensing and biofilm formation of Pseudomonas aeruginosa strain JUPG01 isolated from rancid butter. Biocatal Agric Biotechnol. 2021;36. doi:10.1016/J.BCAB.2021.102115
  57. Pérez-Ibarreche M, Castellano P, Leclercq A, Vignolo G. Control of Listeria monocytogenes biofilms on industrial surfaces by the bacteriocin-producing Lactobacillus sakei CRL1862. FEMS Microbiol Lett. 2016;363(12):1–6. doi:10.1093/FEMSLE/FNW118
  58. Göksel S, Akçelik N, Özdemir C, Akçelik M. The effects of lactic acid bacteria on Salmonella biofilms. Microbiology (Russ Fed). 2022;91(3):278–85. doi:10.1134/S0026261722300129
  59. Abid Y, Casillo A, Gharsallah H, Joulak I, Lanzetta R, Corsaro MM, et al. Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. Int J Biol Macromol. 2018;108:719–28. doi:10.1016/J.IJBIOMAC.2017.10.155
  60. Zhao T, Teresa CP, Zhao P, Chen D, Baker DA, Cords B, et al. Reduction by competitive bacteria of Listeria monocytogenes in biofilms and Listeria bacteria in floor drains in a ready-to-eat poultry processing plant. J Food Prot. 2013;76(4):601-7. doi:10.4315/0362-028X.JFP-12-323
  61. García-Almendárez BE, Cann IKO, Martin SE, Guerrero-Legarreta I, Regalado C. Effect of lactococcus lactis UQ2 and its bacteriocin on listeria monocytogenes biofilms. Food Control. 2008;19(7):670–80. doi:10.1016/J.FOODCONT.2007.07.015
  62. Ndahetuye JB, Koo OK, O’Bryan CA, Ricke SC, Crandall PG. Role of lactic acid bacteria as a biosanitizer to prevent attachment of listeria monocytogenes F6900 on deli slicer contact surfaces. J Food Prot. 2012;75(8):1429–36. doi:10.4315/0362-028X.JFP-12-072
  63. Monteiro GP, Rossi DA, Valadares EC, Peres PABM, Braz RF, Notário FO, et al. Lactic bacterium and Bacillus sp. biofilms can decrease the viability of Salmonella Gallinarum, Salmonella Heidelberg, Campylobacter jejuni, and methicillin-resistant Staphylococcus aureus on different substrates. Rev Bras Cienc Avic. 2021;23(2). doi:10.1590/1806-9061-2020-1408
  64. Rao KP, Kumar NH, Somashekaraiah R, Murali M, JS, Sreenivasa MY. Probiotic attributes and inhibitory effects of lactobacillus plantarum MYS84 against the growth and biofilm formation of pseudomonas aeruginosa. Microbiology. 2021;90(3):361–9. doi:10.1134/S0026261721030103
  65. Ben Slama R, Kouidhi B, Zmantar T, Chaieb K, Bakhrouf A. Anti-listerial and anti-biofilm activities of potential probiotic lactobacillus strains isolated from Tunisian traditional fermented food. J Food Saf. 2013;33(1):8-16. doi:10.1111/JFS.12017
  66. Shangguan W, Xie T, Zhang R, Lu C, Han X, Zhong Q. Anti-biofilm potential of kefir-derived Lactobacillus paracasei L10 against Vibrio parahaemolyticus. Lett Appl Microbiol. 2021;73(6):750-8. doi:10.1111/LAM.13568
  67. Latif A, Shehzad A, Niazi S, Zahid A, Ashraf W, Iqbal MW, et al. Probiotics: mechanism of action, health benefits and their application in food industries [published correction appears in Front Microbiol. 2024 Feb 14;15:1378225. doi:10.3389/fmicb.2024.1378225.]. Front Microbiol. 2023;14:1216674. Published 2023 Aug 17. doi:10.3389/fmicb.2023.1216674
  68. Udayakumar S, Rasika DMD, Priyashantha H, Vidanarachchi JK, Ranadheera CS. Probiotics and beneficial microorganisms in biopreservation of plant-based foods and beverages. Appl Sci. 2022;12(22):11737. doi:10.3390/app122211737

 

 

 

 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.