Archive \ Volume.15 2024 Issue 1

Nutritional Proteomics: A Key to Unlocking Optimal Human Health

  1. Department of Biochemistry, Faculty of Science, King Abdulaziz University, Kingdom of Saudi Arabia, Jeddah, 21332, Saudi Arabia.

Abstract

Proteomics is a scientific field dedicated to the investigation of protein structure function and interactions within living organisms. The review paper explores facets of proteomics and its diverse applications across various research domains. The review sheds light on the crucial role of the proteome within an organism, influenced by factors such as its physiological condition and surroundings. Nutritional proteomics, referred to as neuroproteomics, employs proteomic methods to delve into the interactions between proteins and bioactive components found in food. Nutriproteomics and nutrigenomics, enable comprehensive investigations into how nutrients and proteins interact and impact the human proteome and genome. The review highlights the exploration of proteome alterations associated with diseases and emphasizes the role of nutritional proteomics in disease treatment. It accentuates the potential of proteomics in identifying biomarkers for diseases and unraveling intricate protein-level alterations associated with various conditions, such as infectious diseases, cancer, cardiovascular disorders, and neurodegenerative illnesses. The connection between proteomic technologies for drug discovery is also discussed. The review further underscores how the integration of different 'omics' disciplines offers a holistic understanding of complex biological systems. Ultimately, the review concludes by emphasizing the promising role of proteomic technologies in advancing both research and healthcare.


Downloads: 235
Views: 1774

How to cite:
Vancouver
Sonbol HS. Nutritional Proteomics: A Key to Unlocking Optimal Human Health. Arch Pharm Pract. 2024;15(1):68-83. https://doi.org/10.51847/nko14dBXgB
APA
Sonbol, H. S. (2024). Nutritional Proteomics: A Key to Unlocking Optimal Human Health. Archives of Pharmacy Practice, 15(1), 68-83. https://doi.org/10.51847/nko14dBXgB

Download Citation
References
  1. Sveinsdóttir H, Martin SA, Vilhelmsson OT. Application of proteomics to fish processing and quality, 3rd ed.; Book Editor(s): Benjamin K. Simpson, Publisher: Wiley-Blackwell, United States; 2012. pp. 154-96. doi:10.1002/9781118308035.ch22
  2. Tomanek L. Environmental proteomics: Changes in the proteome of marine organisms in response to environmental stress, pollutants, infection, symbiosis, and development. Annu Rev Mar Sci. 2011;3:373-99. doi:10.1146/annurev-marine-120709-142729
  3. Amiri-Dashatan N, Koushki M, Abbaszadeh HA, Rostami-Nejad M, Rezaei-Tavirani M. Proteomics applications in health: Biomarker and drug discovery and food industry. Iran J Pharm Res. 2018;17(4):1523-36.
  4. Schweigert FJ. Nutritional proteomics: Methods and concepts for research in nutritional science. Ann Nutr Metab. 2007;51(2):99-107. doi:10.1159/000102101
  5. Sellami M, Bragazzi NL. Nutrigenomics and breast cancer: State-of-art, future perspectives and insights for prevention. Nutrients. 2020;12(2):512. doi:10.3390/nu12020512
  6. Carbonaro M. Proteomics: Present and future in food quality evaluation. Trends Food Sci Technol. 2004;15(3-4):209-16. doi:10.1016/j.tifs.2003.09.020
  7. Afzaal M, Saeed F, Hussain M, Shahid F, Siddeeg A, Al‐Farga A. Proteomics as a promising biomarker in food authentication, quality and safety: A review. Food Sci Nutr. 2022;10(7):2333-46. doi:10.1002/fsn3.2842
  8. Monti M, Cozzolino M, Cozzolino F, Tedesco R, Pucci P. Functional proteomics: Protein-protein interactions in vivo. Ital J Biochem. 2007;56(4):310-4.
  9. Banks RE, Dunn MJ, Hochstrasser DF, Sanchez JC, Blackstock W, Pappin DJ, et al. Proteomics: New perspectives, new biomedical opportunities. Lancet. 2000;356(9243):1749-56.
  10. Serpa JJ, Parker CE, Petrotchenko EV, Han J, Pan J, Borchers CH. Mass spectrometry-based structural proteomics. Eur J Mass Spectrom. 2012;18(2):251-67. doi:10.1255/ejms.1178
  11. Chemical proteome mining. Chair of Organic Chemistry II, Technische Universität München, n.d. [Accessed 27 Aug 2023]. Available from: https://www.bio.nat.tum.de/oc2/research/chemical-proteome-mining/
  12. Schaeffer RD, Zhang J, Kinch LN, Pei J, Cong Q, Grishin NV. Classification of domains in predicted structures of the human proteome. Proc Natl Acad Sci U S A. 2023;120(12):e2214069120.
  13. Wilson-Frank C. Proteomics in the evaluation of nutraceuticals and functional foods. In: Gupta, R., Srivastava, A., Lall, R. (eds) Nutraceuticals in Veterinary Medicine, 3rd ed.; Springer: Cham; 2019. pp. 52. doi:10.1007/978-3-030-04624-8_52
  14. Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018;19(5):299-310. doi:10.1038/nrg.2018.4
  15. Cifuentes A. Foodomics, foodome and modern food analysis. TrAC Trends Analyt Chem. 2017;96:1. doi:10.1016/j.trac.2017.09.001
  16. Jagadeesh DS, Kannegundla U, Reddy RK. Application of proteomic tools in food quality and safety. Adv Anim Vet Sci. 2017;5(5):213-25.
  17. Raposo de Magalhães CS, Cerqueira MA, Schrama D, Moreira MJ, Boonanuntanasarn S, Rodrigues PM. A proteomics and other omics approach in the context of farmed fish welfare and biomarker discovery. Rev Aquac. 2020;12(1):122-44. doi:10.1111/raq.12308
  18. Creydt M, Fischer M. Food authentication in real life: How to link nontargeted approaches with routine analytics? Electrophoresis. 2020;41(20):1665-79. doi:10.1002/elps.202000030
  19. Bolek S. Consumer knowledge, attitudes, and judgments about food safety: A consumer analysis. Trends Food Sci Technol. 2020;102:242-8. doi:10.1016/j.tifs.2020.03.009
  20. Fuchs D, Winkelmann I, Johnson IT, Mariman E, Wenzel U, Daniel H. Proteomics in nutrition research: Principles, technologies and applications. Br J Nutr. 2005;94(3):302-14.
  21. Gallardo JM, Ortea I, Carrera M. Proteomics and its applications for food authentication and food-technology research. TrAC Trends Anal Chem. 2013;52:135-41. doi:10.1016/j.trac.2013.05.019
  22. Zhan X, Li B, Zhan X, Schlüter H, Jungblut PR, Coorssen JR. Innovating the concept and practice of two-dimensional gel electrophoresis in the analysis of proteomes at the proteoform level. Proteomes. 2019;7(4):36. doi:10.3390/proteomes7040036
  23. Cupp-Sutton KA, Wu S. High-throughput quantitative top-down proteomics. Mol Omics. 2020;16(2):91-9. doi:10.1039/c9mo00154a
  24. Dupree EJ, Jayathirtha M, Yorkey H, Mihasan M, Petre BA, Darie CC. A critical review of bottom-up proteomics: The good, the bad, and the future of this field. Proteomes. 2020;8(3):14. doi:10.3390/proteomes8030014
  25. Piersimoni L, Kastritis PL, Arlt C, Sinz A. Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein–Protein Interactions─ A method for all seasons. Chem Rev. 2021;122(8):7500-31. doi:10.1021/acs.chemrev.1c00786
  26. Li D, Yi J, Han G, Qiao L. MALDI-TOF mass spectrometry in clinical analysis and research. ACS Meas Sci Au. 2022;2(5):385-404. doi:10.1021/acsmeasuresciau.2c00019
  27. Birhanu AG. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin Proteom. 2023;20(1):32. doi:10.1186/s12014-023-09424-x
  28. Karpievitch YV, Polpitiya AD, Anderson GA, Smith RD, Dabney AR. Liquid chromatography mass spectrometry-based proteomics: Biological and technological aspects. Ann Appl Stat. 2010;4(4):1797-823. doi:10.1214/10-AOAS341
  29. Sangeetha J, Shettar AK, Thangadurai D, Dandin CJ, Hospet R, Sheth BP, et al. Whole protein analysis using LC-MS/MS for food authentication. InProteomics for food authentication 2020 May 7 (pp. 105-120). CRC Press.
  30. Endalifer ML, Diress G. Epidemiology, predisposing factors, biomarkers, and prevention mechanism of obesity: A systematic review. J Obes. 2020;2020:1-8. doi:10.1155/2020/6134362
  31. Chaudhary N, Kumar V, Sangwan P, Pant NC, Saxena A, Joshi S, et al. Personalized nutrition and-omics. Compr Foodomics. 2021:495-507. doi:10.1016/B978-0-08-100596-5.22880-1
  32. Ikizler TA. Using and interpreting serum albumin and prealbumin as nutritional markers in patients on chronic dialysis. Semin Dial. 2014;27(6):590-2.
  33. Marcason W. Should albumin and prealbumin be used as indicators for malnutrition? J Acad Nutr Diet. 2017;117(7):1144.
  34. Peveler WJ, Yazdani M, Rotello VM. Selectivity and specificity: Pros and cons in sensing. ACS Sens. 2016;1(11):1282-5.
  35. Kussmann M, Panchaud A, Affolter M. Proteomics in nutrition: Status quo and outlook for biomarkers and bioactives. J Proteome Res. 2010;9(10):4876-87.
  36. Romagnolo DF, Milner JA. Opportunities and challenges for nutritional proteomics in cancer prevention. J Nutr. 2012;142(7):1360S-9S. doi:10.3945/jn.111.151803
  37. Suhre K, McCarthy MI, Schwenk JM. Genetics meets proteomics: perspectives for large population-based studies. Nat Rev Genet. 2021;22(1):19-37. doi:10.1038/s41576-020-0268-2
  38. Keijer J, Escoté X, Galmés S, Palou-March A, Serra F, Aldubayan MA, et al. Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies. Crit Rev Food Sci Nutr. 2023:1-29. doi:10.1080/10408398.2023.2198605
  39. Wang M, Hng TM. HbA1c: More than just a number. Aust J Gen Pract. 2021;50(9):628-32. Available from: https://search.informit.org/doi/10.3316/informit.046409063840494
  40. Naryzny SN, Legina OK. Haptoglobin as a Biomarker. Biochem Mosc Suppl B Biomed Chem. 2021;15(3):184-98. doi:10.1134/S1990750821030069
  41. Shinozuka T, Kanda M, Kodera Y. Site-specific protein biomarkers in gastric cancer: A comprehensive review of novel biomarkers and clinical applications. Expert Rev Mol Diagn. 2023;23(8):701-12. doi:10.1080/14737159.2023.2232298
  42. Köberle B, Schoch S. Platinum complexes in colorectal cancer and other solid tumors. Cancers (Basel). 2021;13(9):2073. doi:10.3390/cancers13092073
  43. Kim SY, Lee JP, Shin WR, Oh IH, Ahn JY, Kim YH. Cardiac biomarkers and detection methods for myocardial infarction. Mol Cell Toxicol. 2022;18(4):443-55. doi:10.1007/s13273-022-00287-1
  44. Smith SE, Muir J, Kalabalik-Hoganson J. Procalcitonin in special patient populations: Guidance for antimicrobial therapy. Am J Health Syst Pharm. 2020;77(10):745-58. doi:10.1093/ajhp/zxaa089
  45. Cazzato G, Colagrande A, Lospalluti L, Ingravallo G, Cascardi E, Dellino M, et al. Histological hallmarks of malignant melanoma. melanoma - standard of care, challenges, and updates in clinical research. IntechOpen; 2023. Italy. doi:10.5772/intechopen.106638
  46. Dhara K, Mahapatra DR. Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection. Microchem J. 2020;156:104857. doi:10.1016/j.microc.2020.104857
  47. Malmgren L, Öberg C, den Bakker E, Leion F, Siódmiak J, Åkesson A, et al. The complexity of kidney disease and diagnosing it - cystatin C, selective glomerular hypofiltration syndromes and proteome regulation. J Intern Med. 2023;293(3):293-308. 
  48. Yi TT, Yu JM, Liang YY, Wang SQ, Lin GC, Wu XD. Identification of cystic fibrosis transmembrane conductance regulator as a prognostic marker for juvenile myelomonocytic leukemia via the whole-genome bisulfite sequencing of monozygotic twins and data mining. Transl Pediatr. 2022;11(9):1521-33.
  49. Balkanov SK, Trajkova S, Pivkova-Veljanovska A, Spasovski D, Ridova N, Kalcev G, et al. Chromosomal aberrations and bence-jones proteins as a significant biomarkers in multiple myeloma. Lett Appl Nano Bioscience. 2023;12(3):74. doi:10.33263/LIANBS123.074
  50. Yan Y, Yeon SY, Qian C, You S, Yang W. On the road to accurate protein biomarkers in prostate cancer diagnosis and prognosis: Current status and future advances. Int J Mol Sci. 2021;22(24):13537. doi:10.3390/ijms222413537
  51. Ligorio F, Fucà G, Zattarin E, Lobefaro R, Zambelli L, Leporati R, et al. The pan-immune-inflammation-value predicts the survival of patients with human epidermal growth factor receptor 2 (HER2)-positive advanced breast cancer treated with first-line taxane-trastuzumab-pertuzumab. Cancers (Basel). 2021;13(8):1964. doi:10.3390/cancers13081964
  52. Goryacheva OA, Ponomaryova TD, Drozd DD, Kokorina AA, Rusanova TY, Mishra PK, et al. Heart failure biomarkers BNP and NT-proBNP detection using optical labels. TrAC Trends Anal Chem. 2022;146:116477. doi:10.1016/j.trac.2021.116477
  53. Khadir A, Tiss A. Proteomics approaches towards early detection and diagnosis of cancer. J Carcinog Mutagen. 2023;14:1-16.
  54. Ősz Á, Lánczky A, Győrffy B. Survival analysis in breast cancer using proteomic data from four independent datasets. Sci Rep. 2021;11(1):16787.  doi:10.1038/s41598-021-96340-5
  55. Irimie AI, Braicu C, Pasca S, Magdo L, Gulei D, Cojocneanu R, et al. Role of key micronutrients from Nutrigenetic and nutrigenomic perspectives in cancer prevention. Medicina (Kaunas). 2019;55(6):283. doi:10.3390/medicina55060283
  56. Irimie AI, Braicu C, Pileczki V, Petrushev B, Soritau O, Campian RS, et al. Knocking down of p53 triggers apoptosis and autophagy, concomitantly with inhibition of migration on SSC-4 oral squamous carcinoma cells. Mol Cell Biochem. 2016;419(1-2):75-82.
  57. Schroll MM, Hummon AB. Employing proteomics to understand the effects of nutritional intervention in cancer treatment. Anal Bioanal Chem. 2018;410(25):6371-86. doi:10.1007/s00216-018-1219-z
  58. Zhou Y, Lih TM, Pan J, Höti N, Dong M, Cao L, et al. Proteomic signatures of 16 major types of human cancer reveal universal and cancer-type-specific proteins for the identification of potential therapeutic targets. J Hematol Oncol. 2020;13(1):170.  doi:10.1186/s13045-020-01013-x
  59. Fortmann SP, Burda BU, Senger CA, Lin JS, Beil TL, O’Connor E, et al. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews. In Vitamin, Mineral, and Multivitamin Supplements for the Primary Prevention of Cardiovascular Disease and Cancer: A Systematic Evidence Review for the U.S. Preventive Services Task Force; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2013.
  60. Juneja S, Rathore AS, Sharma K, Shetty D, Jain A. Antioxidant-oxidant index as a biomarker in oral potentially malignant disorders and oral squamous cell carcinoma: A biochemical study. J Clin Diagn Res. 2017;11(3):ZC05-8.
  61. Esquivel-Chirino C, Bolaños-Carrillo MA, Carmona-Ruiz D, Lopéz-Macay A, Hernández-Sánchez F, Montés-Sánchez D, et al. The protective role of cranberries and blueberries in oral cancer. Plants (Basel). 2023;12(12):2330. doi:10.3390/plants12122330
  62. Galvão De Podestá OP, Peres SV, Salaroli LB, Cattafesta M, De Podestá JRV, von Zeidler SLV, et al. Consumption of minimally processed foods as protective factors in the genesis of squamous cell carcinoma of the head and neck in Brazil. PLoS One. 2019;14(7):e0220067. doi:10.1371/journal.pone.0220067
  63. Weber DD, Aminzadeh-Gohari S, Tulipan J, Catalano L, Feichtinger RG, Kofler B. Ketogenic diet in the treatment of cancer - Where do we stand? Mol Metab. 2020;33:102-21. doi:10.1016/j.molmet.2019.06.026
  64. Saraswat M, Mäkitie A, Agarwal R, Joenväärä S, Renkonen S. Oral squamous cell carcinoma patients can be differentiated from healthy individuals with label-free serum proteomics. Br J Cancer. 2017;117(3):376-84. doi:10.1038/bjc.2017.172
  65. Azamjah N, Soltan-Zadeh Y, Zayeri F. Global trend of breast cancer mortality rate: A 25-year study. Asian Pac J Cancer Prev. 2019;20(7):2015-20. doi:10.31557/APJCP.2019.20.7.2015
  66. Li KW, Ganz AB, Smit AB. Proteomics of neurodegenerative diseases: Analysis of human post-mortem brain. J Neurochem. 2019;151(4):435-45. doi:10.1111/jnc.14603
  67. Bissonauth V, Shatenstein B, Ghadirian P. Nutrition and breast cancer among sporadic cases and gene mutation carriers: An overview. Cancer Detect Prev. 2008;32(1):52-64.
  68. Neagu AN, Jayathirtha M, Whitham D, Mutsengi P, Sullivan I, Petre BA, et al. Proteomics-based identification of dysregulated proteins in breast cancer. Proteomes. 2022;10(4):35. doi:10.3390/proteomes10040035
  69. Mohanty V, Subbannayya Y, Patil S, Puttamallesh VN, Najar MA, Datta KK, et al. Molecular alterations in oral cancer using high-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue. J Cell Commun Signal. 2021;15(3):447-59. doi:10.1007/s12079-021-00609-3
  70. Daily A, Ravishankar P, Harms S, Klimberg VS. Using tears as a non-invasive source for early detection of breast cancer. PLoS One. 2022;17(4):e0267676. doi:10.1371/ journal.pone.0267676
  71. Marino P, Pepe G, Basilicata MG, Vestuto V, Marzocco S, Autore G, et al. Potential role of natural antioxidant products in oncological diseases. Antioxidants (Basel). 2023;12(3):704. doi:10.3390/antiox12030704
  72. Dai H, Much AA, Maor E, Asher E, Younis A, Xu Y, et al. Global, regional, and national burden of ischaemic heart disease and its attributable risk factors, 1990-2017: Results from the global burden of disease study 2017. Eur Heart J Qual Care Clin Outcomes. 2022;8(1):50-60. doi:10.1093/ehjqcco/qcaa076
  73. Wong ND, Budoff MJ, Ferdinand K, Graham IM, Michos ED, Reddy T, et al. Atherosclerotic cardiovascular disease risk assessment: An american society for preventive cardiology clinical practice statement. Am J Prev Cardiol. 2022;10:100335. doi:10.1016/j.ajpc.2022.100335
  74. Nurmohamed NS, Belo Pereira JP, Hoogeveen RM, Kroon J, Kraaijenhof JM, Waissi F, et al. Targeted proteomics improves cardiovascular risk prediction in secondary prevention. Eur Heart J. 2022;43(16):1569-77. doi:10.1093/eurheartj/ehac055
  75. Hoogeveen RM, Pereira JPB, Nurmohamed NS, Zampoleri V, Bom MJ, Baragetti A, et al. Improved cardiovascular risk prediction using targeted plasma proteomics in primary prevention. Eur Heart J. 2020;41(41):3998-4007. doi:10.1093/eurheartj/ehaa648
  76. Schumacher-Schuh A, Bieger A, Borelli WV, Portley MK, Awad PS, Bandres-Ciga S. Advances in proteomic and metabolomic profiling of neurodegenerative diseases. Front Neurol. 2022;12:792227. URL=https://www.frontiersin.org/articles/10.3389/fneur.2021.792227. doi:10.3389/fneur.2021.792227
  77. Ho JE, Lyass A, Courchesne P, Chen G, Liu C, Yin X, et al. Protein biomarkers of cardiovascular disease and mortality in the community. J Am Heart Assoc. 2018;7(14):e008108. doi:10.1161/JAHA.117.008108
  78. Andrews B, Murphy AE, Stofella M, Maslen S, Almeida-Souza L, Skehel JM, et al. Multidimensional dynamics of the proteome in the neurodegenerative and aging mammalian brain. Mol Cell Proteomics. 2022;21(2):100192. doi:10.1016/j.mcpro.2021.100192
  79. Hosp F, Mann M. A primer on concepts and applications of proteomics in neuroscience. Neuron. 2017;96(3):558-71.
  80. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013. 
  81. Kaiser S, Zhang L, Mollenhauer B, Jacob J, Longerich S, Del-Aguila J, et al. A proteogenomic view of Parkinson's disease causality and heterogeneity. NPJ Parkinsons Dis. 2023;9(1):24. doi:10.1038/s41531-023-00461-9
  82. Jain AP, Sathe G. Proteomics landscape of Alzheimer's disease. Proteomes. 2021;9(1):13. doi:10.3390/proteomes9010013
  83. Hondius DC, van Nierop P, Li KW, Hoozemans JJ, van der Schors RC, van Haastert ES, et al. Profiling the human hippocampal proteome at all pathologic stages of Alzheimer's disease. Alzheimers Dement. 2016;12(6):654-68.
  84. Hondius DC, Eigenhuis KN, Morrema THJ, van der Schors RC, van Nierop P, Bugiani M, et al. Proteomics analysis identifies new markers associated with capillary cerebral amyloid angiopathy in Alzheimer's disease. Acta Neuropathol Commun. 2018;6(1):46.
  85. World Health Organization. World Health Statistics 2015. World Health Organization: Geneva, Switzerland, 2015.
  86. Balashanmugam S. Proteomics in the treatment of infectious pathogens. J Proteomics Bioinform. 2022;15:604.
  87. Zubair M, Wang J, Yu Y, Faisal M, Qi M, Shah AU, et al. Proteomics approaches: A review regarding an importance of proteome analyses in understanding the pathogens and diseases. Front Vet Sci. 2022;9:1079359. doi:10.3389/fvets.2022.1079359
  88. Jean Beltran PM, Federspiel JD, Sheng X, Cristea IM. Proteomics and integrative omic approaches for understanding host–pathogen interactions and infectious diseases. Mol Syst Biol. 2017;13(3):922. doi:10.15252/msb.20167062
  89. Sperk M, Van Domselaar R, Rodriguez JE, Mikaeloff F, Sá Vinhas B, Saccon E, et al. Utility of proteomics in emerging and re-emerging infectious diseases caused by RNA viruses. J Proteome Res. 2020;19(11):4259-74. doi:10.1021/acs.jproteome.0c00380
  90. Greco TM, Cristea IM. Proteomics tracing the footsteps of infectious disease. Mol Cell Proteomics. 2017;16(4):S5-14.
  91. Wang Z, Cryar A, Lemke O, Tober-Lau P, Ludwig D, Helbig ET, et al. A multiplex protein panel assay for severity prediction and outcome prognosis in patients with COVID-19: An observational multi-cohort study. EClinicalMedicine. 2022;49:101495. doi:10.1016/j.eclinm.2022.101495
  92. Overmyer KA, Shishkova E, Miller IJ, Balnis J, Bernstein MN, Peters-Clarke TM, et al. Large-scale multi-omic analysis of COVID-19 severity. Cell Syst. 2021;12(1):23-40. doi:10.1016/j.cels.2020.10.003
  93. Demichev V, Tober-Lau P, Lemke O, Nazarenko T, Thibeault C, Whitwell H, et al. A time-resolved proteomic and prognostic map of COVID-19. Cell Syst. 2021;12(8):780-94. doi:10.1016/j.cels.2021.05.005
  94. Lee SE, Schulze KJ, Cole RN, Wu LS, Yager JD, Groopman J, et al. Biological systems of vitamin K: A plasma nutriproteomics study of subclinical vitamin K deficiency in 500 Nepalese children. OMICS. 2016;20(4):214-23.
  95. Haoudi A, Bensmail H. Bioinformatics and data mining in proteomics. Expert Rev Proteomics. 2006;3(3):333-43. doi:10.1586/14789450.3.3.333
  96. Sonsare PM, Gunavathi C. Investigation of machine learning techniques on proteomics: A comprehensive survey. Prog Biophys Mol Biol. 2019;149:54-69. doi:10.1016/j.pbiomolbio.2019.09.004
  97. Su M, Zhang Z, Zhou L, Han C, Huang C, Nice EC. Proteomics, personalized medicine and cancer. Cancers (Basel). 2021;13(11):2512. doi:10.3390/cancers13112512
  98. Louie AD, Huntington K, Carlsen L, Zhou L, El-Deiry WS. Integrating molecular biomarker inputs into development and use of clinical cancer therapeutics. Front Pharmacol. 2021;12:747194. doi:10.3389/fphar.2021.747194
  99. Figarska SM, Rigdon J, Ganna A, Elmståhl S, Lind L, Gardner CD, et al. Proteomic profiles before and during weight loss: Results from randomized trial of dietary intervention. Sci Rep. 2020;10(1):7913. doi:10.1038/s41598-020-64636-7
  100. He QY, Chiu JF. Proteomics in biomarker discovery and drug development. J Cell Biochem. 2003;89(5):868-86.
  101. Irvine GW, Nguyen S. An overview of the “-omics” fields at the forefront of next-generation personalized medicine and fundamental systems biology studies. Biomed Genet Genomics. 2019;4(2). doi:10.15761/BGG.1000147
  102. Assadsangabi A, Evans CA, Corfe BM, Lobo A. Application of proteomics to inflammatory bowel disease research: Current status and future perspectives. Gastroenterol Res Pract. 2019;2019:1426954. doi:10.1155/2019/142695
  103. Bodaghi A, Fattahi N, Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon. 2023;9(2):e13323. doi:10.1016/j.heliyon.2023.e13323
  104. Vaz-Rodrigues R, Mazuecos L, Villar M, Urra JM, Gortázar C, de la Fuente J. Serum biomarkers for nutritional status as predictors in COVID-19 patients before and after vaccination. J Funct Foods. 2023;101:105412.  doi:10.1016/j.jff.2023.105412
  105. Farsi Y, Tahvildari A, Arbabi M, Vazife F, Sechi LA, Shahidi Bonjar AH, et al. Diagnostic, prognostic, and therapeutic roles of gut microbiota in COVID-19: A comprehensive systematic review. Front Cell Infect Microbiol. 2022;12:804644. doi:10.3389/fcimb.2022.804644
  106. Rodriguez JAM, Bifano M, Roca Goma E, Plasencia CM, Torralba AO, Font MS, et al. Effect and tolerability of a nutritional supplement based on a synergistic combination of β-Glucans and selenium- and zinc-enriched Saccharomyces cerevisiae (ABB C1®) in volunteers receiving the influenza or the COVID-19 vaccine: A randomized, double-blind, placebo-controlled study. Nutrients. 2021;13(12):4347. doi:10.3390/nu13124347
  107. Shama A, Soni T, Jawanda IK, Upadhyay G, Sharma A, Prabha V. The latest developments in using proteomic biomarkers from urine and serum for non-invasive disease diagnosis and prognosis. Biomark Insights. 2023;18:11772719231190218. doi:10.1177/11772719231190218
  108. Fernández CA, Yan L, Louis G, Yang J, Kutok JL, Moses MA. The matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex plays a role in breast tumor growth and is present in the urine of breast cancer patients. Clin Cancer Res. 2005;11(15):5390-5. 
  109. Pories SE, Zurakowski D, Roy R, Lamb CC, Raza S, Exarhopoulos A, et al. Urinary metalloproteinases: noninvasive biomarkers for breast cancer risk assessment. Cancer Epidemiol Biomarkers Prev. 2008;17(5):1034-42. doi:10.1158/1055-9965.EPI-07-0365
  110. Jedinak A, Curatolo A, Zurakowski D, Dillon S, Bhasin MK, Libermann TA, et al. Novel non-invasive biomarkers that distinguish between benign prostate hyperplasia and prostate cancer. BMC Cancer. 2015;15:259. 
  111. Watanabe Y, Hirao Y, Kasuga K, Tokutake T, Kitamura K, Niida S, et al. Urinary Apolipoprotein C3 is a potential biomarker for Alzheimer's disease. Dement Geriatr Cogn Dis Extra. 2020;10(3):94-104.
  112. Pejcic M, Stojnev S, Stefanovic V. Urinary proteomics--A tool for biomarker discovery. Ren Fail. 2010;32(2):259-68. 
  113. Dihazi H, Müller GA, Lindner S, Meyer M, Asif AR, Oellerich M, et al. Characterization of diabetic nephropathy by urinary proteomic analysis: Identification of a processed ubiquitin form as a differentially excreted protein in diabetic nephropathy patients. Clin Chem. 2007;53(9):1636-45.
  114. Zhong X, Tu YJ, Li Y, Zhang P, Wang W, Chen SS, et al. Serum levels of WNT1-inducible signaling pathway protein-1 (WISP-1): A noninvasive biomarker of renal fibrosis in subjects with chronic kidney disease. Am J Transl Res. 2017;9(6):2920-32.
  115. Wang B, Ding X, Ding C, Tesch G, Zheng J, Tian P, et al. WNT1-inducible-signaling pathway protein 1 regulates the development of kidney fibrosis through the TGF-β1 pathway. FASEB J. 2020;34(11):14507-20. doi:10.1096/fj.202000953R
  116. Haider S, Pal R. Integrated analysis of transcriptomic and proteomic data. Curr Genomics. 2013;14(2):91-110. doi:10.2174/1389202911314020003
  117. Ponomarenko EA, Krasnov GS, Kiseleva OI, Kryukova PA, Arzumanian VA, Dolgalev GV, et al. Workability of mRNA sequencing for predicting protein abundance. Genes (Basel). 2023;14(11):2065. doi:10.3390/genes14112065
  118. Singh V. Current challenges and future implications of exploiting the omics data into nutrigenetics and nutrigenomics for personalized diagnosis and nutrition-based care. Nutrition. 2023;110:112002. doi:10.1016/j.nut.2023.112002
  119. Pandita D, Pandita A. Omics technology for the promotion of nutraceuticals and functional foods. Front Physiol. 2022;13:817247. doi:10.3389/fphys.2022.817247
  120. Shuken SR. An introduction to mass spectrometry-based proteomics. J Proteome Res. 2023;22(7):2151-71. doi:10.1021/acs.jproteome.2c00838
  121. World Economic Forum. Alternative proteins will transform food, mitigate climate change and drive profits. Here's how. 2021. Available from: https://www.weforum.org/agenda/2021/03/alternative-proteins-will-transform-food-mitigate-climate-change-and-drive-profits.

 

 

 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.