Archive \ Volume.15 2024 Issue 1

Glucomannan Ameliorates Hepatic Lipid Metabolism and Glucose Homeostasis in Rat Models Fed a High-Fat Diet

, , , ,
  1. Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia.
  2. Department of Food Science and Nutrition, College of Science, Taif University, Taif 21944, Saudi Arabia.

Abstract

This work was conducted to investigate the effects of glucomannan extracted from konjac (KGM) on high-fat diet (HFD)-)-induced lipid metabolic abnormalities and dysglycaemia and explore its possible mechanisms. Sixty adult male albino rats (Sprague-Dawley) were separated into five groups: G1 (control) fed a basal fat diet (BFD); G2, fed a high-fat modified diet containing 20% fat (HFD); and G3, G4, and G5, fed an HFD supplemented with three levels of KGM (1, 5, and 10 g/100 g diet, respectively). Results showed that rats fed HFDs developed hepatic glucose and lipid abnormalities. Glucomannan administration normalized hepatic glucose metabolism in HFD-fed rats with low fasting blood glucose. KGM may postpone obesity, diabetes, and associated consequences as a dietary intervention.  To sum up, supplementing rats with 10 g/100g dietary Glucomannan improves blood lipid levels, lipid metabolism in the liver, and glucose regulation. This suggests that KGM could be supplied in the future as a potential anti-hyperglycaemic and antilipidemic dietary supplement.


Downloads: 29
Views: 45

How to cite:
Vancouver
Alreemi RM, Radhi KS, Bushnaq T, Saleh O, Alazragi RS. Glucomannan Ameliorates Hepatic Lipid Metabolism and Glucose Homeostasis in Rat Models Fed a High-Fat Diet. Arch Pharm Pract. 2024;15(1):121-6. https://doi.org/10.51847/IUaZmNExfl
APA
Alreemi, R. M., Radhi, K. S., Bushnaq, T., Saleh, O., & Alazragi, R. S. (2024). Glucomannan Ameliorates Hepatic Lipid Metabolism and Glucose Homeostasis in Rat Models Fed a High-Fat Diet. Archives of Pharmacy Practice, 15(1), 121-126. https://doi.org/10.51847/IUaZmNExfl

Download Citation
References
  1. Kim S, Hong J, Jeon R, Kim HS. Adzuki bean ameliorates hepatic lipogenesis and proinflammatory mediator expression in mice fed a high-cholesterol and high-fat diet to induce nonalcoholic fatty liver disease. Nutr Res. 2016;36(1):90-100.
  2. Venkatakrishnan K, Chiu HF, Wang CK. Extensive review of popular functional foods and nutraceuticals against obesity and its related complications with a special focus on randomized clinical trials. Food Funct. 2019;10(5):2313-29.
  3. Charbonneau A, Melancon A, Lavoie C, Lavoie JM. Alterations in hepatic glucagon receptor density and in Gsα and Giα2 protein content with diet-induced hepatic steatosis: Effects of acute exercise. Am J Physiol Endocrinol Metab. 2005;289(1):E8-14.
  4. Chen Y, Jin L, Li Y, Xia G, Chen C, Zhang Y. Bamboo-shaving polysaccharide protects against high-diet induced obesity and modulates the gut microbiota of mice. J Funct Food. 2018;49:20-31.
  5. Coelho DF, Pereira-Lancha LO, Chaves DS, Diwan D, Ferraz R, Campos-Ferraz PL, et al. Effect of high-fat diets on body composition, lipid metabolism and insulin sensitivity, an d the role of exercise on these parameters. Braz J Med Biol Res. 2011;44(10):966-72. 
  6. Denisenko YK, Kytikova OY, Novgorodtseva TP, Antonyuk MV, Gvozdenko TA, Kantur TA. Lipid-induced mechanisms of metabolic syndrome. J Obes. 2020;2020:5762395. 
  7. Fatehi-Hassanabad Z, Chan CB. Transcriptional regulation of lipid metabolism by fatty acids: A key determinant of pancreatic β-cell function. Nutr Metab (Lond). 2005;2(1):1-12.
  8. Kim Y, Keogh J, Clifton P. Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutr Res Rev. 2018;31(1):35-51.
  9. Müller M, Canfora EE, Blaak EE. Gastrointestinal transit time, glucose homeostasis and metabolic health: Modulation by dietary fibers. Nutrients. 2018;10(3):275.
  10. Adefegha SA. Functional foods and nutraceuticals as dietary intervention in chronic diseases; novel perspectives for health promotion and disease prevention. J Diet Suppl. 2018;15(6):977-1009.
  11. Ouyang D, Deng J, Zhou K, Liang Y, Chen Y, Wang D, et al. The effect of deacetylation degree of konjac glucomannan on microbial metabolites and gut microbiota in vitro fermentation. J Funct Food. 2020;66:103796.
  12. Swennen K, Courtin CM, Delcour JA. Non-digestible oligosaccharides with prebiotic properties. Crit Rev Food Sci Nutr. 2006;46(6):459-71. 
  13. Ibrahim OO. Functional oligo-saccharides: Chemicals structure, manufacturing, health benefits, applications and regulations. J Food Chem Nanotechnol. 2018;4(4):65-76.
  14. Zang Y, Zhang L, Igarashi K, Yu C. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food Funct. 2015;6(3):834-41.
  15. Devaraj RD, Reddy CK, Xu B. Health-promoting effects of konjac glucomannan and its practical applications: A critical review. Int J Biol Macromol. 2019;126:273-81.
  16. Yang D, Yuan Y, Wang L, Wang X, Mu R, Pang J, et al. A review on konjac glucomannan gels: Microstructure and application. Int J Mol Sci. 2017;18(11):2250.
  17. Kiyohara H, Matsuzaki T, Yamada H. Intestinal Peyer’s patch-immunomodulating glucomannans from rhizomes of Anemarrhena asphodeloides Bunge. Phytochemistry. 2013;96:337-46.
  18. Wang H, Zhang X, Wang S, Li H, Lu Z, Shi J, et al. Mannan-oligosaccharide modulates the obesity and gut microbiota in high-fat diet-fed mice. Food Funct. 2018;9(7):3916-29.
  19. Liu X, Chen S, Yan Q, Li Y, Jiang Z. Effect of Konjac mannan oligosaccharides on diphenoxylate-induced constipation in mice. J Funct Food. 2019;57:399-407.
  20. Lu XJ, Chen XM, Fu D-X, Cong W, Ouyang F. Effect of Amorphophallus Konjac oligosaccharides on STZ-induced diabetes model of isolated islets. Life Sci. 2002;72(6):711-9.
  21. Zheng J, Li H, Zhang X, Jiang M, Luo C, Lu Z, et al. Prebiotic mannan-oligosaccharides augment the hypoglycemic effects of metformin in correlation with modulating gut microbiota. J Agric Food Chem. 2018;66(23):5821-31.
  22. Korolenko TA, Bgatova NP, Vetvicka V. Glucan and mannan—two peas in a pod. Int J Mol Sci. 2019;20(13):3189.
  23. Korolenko T, Kisarova YA, Filjushina E, Dergunova M, Machova E. Macrophage stimulation and β-dglucans as biological response modifiers: The role in experimental tumor development.  Handbook of Macrophages: Life Cycle, Functions and Diseases 2012. p. 249-75.
  24. Korolenko TA, Johnston TP, Machova E, Bgatova NP, Lykov AP, Goncharova NV, et al. Hypolipidemic effect of mannans from C. albicans serotypes a and B in acute hyperlipidemia in mice. Int J Biol Macromol. 2018;107(Pt B):2385-94.
  25. Zhao H, Wu Z, Zhou Y, Guo D, Wang H, Chen X. Hepatic lipid metabolism and oxidative stress responses of grass carp (Ctenopharyngodon idella) fed diets of two different lipid levels against Aeromonas hydrophila infection. Aquaculture. 2019;509:149-58.
  26. Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol. 2013;48:434-41.
  27. Straczkowski M, Kowalska I, Dzienis-Straczkowska S, Kinalski M, Gorski J, Kinalska I. The effect of exercise training on glucose tolerance and skeletal muscle triacylglycerol content in rats fed with a high-fat diet. Diabetes Metab. 2001;27(1):19-23.
  28. Drouin R, Robert G, Milot M, Massicotte D, Péronnet F, Lavoie C. Swim training increases glucose output from liver perfused in situ with glucagon in fed and fasted rats. Metabolism. 2004;53(8):1027-31.
  29. Shang W, Li H, Strappe P, Zhou Z, Blanchard C. Konjac glucomannans attenuate diet-induced fat accumulation on livers and its regulation pathway. J Funct Food. 2019;52:258-65.
  30. Zhai X, Lin D, Zhao Y, Li W, Yang X. Enhanced anti-obesity effects of bacterial cellulose combined with konjac glucomannan in high-fat diet-fed C57BL/6J mice. Food Funct. 2018;9(10):5260-72.
  31. Nguyen P, Leray V, Diez M, Serisier S, Bloc’h JL, Siliart B, et al. Liver lipid metabolism. J Anim Physiol Anim Nutr (Berl). 2008;92(3):272-83.
  32. Lee HS, Lee SJ, Yu HJ, Lee JH, Cho HY. Fermentation with Lactobacillus enhances the preventive effect of garlic extract on high fat diet-induced hepatic steatosis in mice. J Funct Food. 2017;30:125-33.
  33. Yang Y, Li W, Liu Y, Sun Y, Li Y, Yao Q, et al. Alpha-lipoic acid improves high-fat diet-induced hepatic steatosis by modulating the transcription factors SREBP-1, FoxO1 and Nrf2 via the SIRT1/LKB1/AMPK pathway. J Nutr Biochem. 2014;25(11):1207-17.
  34. Yang JY, Lee SJ, Park HW, Cha YS. Effect of genistein with carnitine administration on lipid parameters and obesity in C57Bl/6J mice fed a high-fat diet. J Med Food. 2006;9(4):459-67.
  35. Dobrzyn P, Pyrkowska A, Jazurek M, Szymanski K, Langfort J, Dobrzyn A. Endurance training-induced accumulation of muscle triglycerides is coupled to upregulation of stearoyl-CoA desaturase 1. J Appl Physiol. 2010;109(6):1653-61.
  36. Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 2017;13(10):572-87.
  37. Mokadem M, Zechner JF, Margolskee RF, Drucker DJ, Aguirre V. Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency. Mol Metab. 2014;3(2):191-201.
  38. Guasch-Ferré M, Santos JL, Martínez-González MA, Clish CB, Razquin C, Wang D, et al. Glycolysis/gluconeogenesis-and tricarboxylic acid cycle–related metabolites, Mediterranean diet, and type 2 diabetes. Am J Clin Nutr. 2020;111(4):835-44.
  39. Hatting M, Tavares CD, Sharabi K, Rines AK, Puigserver P. Insulin regulation of gluconeogenesis. Ann N Y Acad Sci. 2018;1411(1):21-35.
  40. Tang L, Luo K, Liu C, Wang X, Zhang D, Chi A, et al. Decrease in myostatin by ladder-climbing training is associated with insulin resistance in diet-induced obese rats. Chin Med J. 2014;127(12):2342-9.
  41. Chen HL, Sheu WHH, Tai TS, Liaw YP, Chen YC. Konjac supplement alleviated hypercholesterolemia and hyperglycemia in type 2 diabetic subjects—A randomized double-blind trial. J Am Coll Nutr. 2003;22(1):36-42.
  42. McCarty MF. Nutraceutical resources for diabetes prevention–An update. Med Hypotheses. 2005;64(1):151-8.
  43. Ashouri S, Keyvanshokooh S, Salati AP, Johari SA, Pasha-Zanoosi H. Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture. 2015;446:25-9.
  44. Meng XL, Li S, Qin CB, Zhu ZX, Hu WP, Yang LP, et al. Intestinal microbiota and lipid metabolism responses in the common carp (Cyprinus carpio L.) following copper exposure. Ecotoxicol Environ Saf. 2018;160:257-64.
  45. Jitrapakdee S, Vidal-Puig A, Wallace JC. Anaplerotic roles of pyruvate carboxylase in mammalian tissues. Cell Mol Life Sci. 2006;63(7-8):843-54.
  46. Wang D, Yang H, De Braganca KC, Lu J, Shih LY, Briones P, et al. The molecular basis of pyruvate carboxylase deficiency: Mosaicism correlates with prolonged survival. Mol Genet Metab. 2008;95(1-2):31-8.

 

 

 


Related articles:
Most viewed articles:
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.