Archive \ Volume.15 2024 Issue 1

Impact of Carrageenan-Soy Protein Combination on CXCR-4 Expression, Cell Viability, and Apoptosis in HCT-116 Cells

, , ,
  1. Research Center of Genetic Engineering and Bioinformatics, VACSERA, Cairo, Egypt.
  2. Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
  3. Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mishit 61421, Saudi Arabia.
  4. Immunology Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.

Abstract

The objective was to explore the therapeutic potential of carrageenan and soy protein in treating colorectal cancer (CRC) by selectively targeting cancer cells and modulating the chemokine receptor CXCR-4. The chemokine receptor CXCR-4 plays a crucial role in colon cancer by promoting tumor cell proliferation, metastasis, and angiogenesis. Therefore, targeting CXCR-4 expression could be a promising approach for colon cancer treatment. We conducted experiments using two groups of HCT-116 cells. The CS-HCT group was treated with a combination of carrageenan and soy protein, while the untreated Group UHCT served as a control. The results demonstrated that the combination treatment with carrageenan and soy protein led to a time-dependent decrease in cell viability compared to the untreated group. The treated group exhibited significantly reduced cell viability, particularly after 48 and 72 hours of treatment. Moreover, the combination treatment induced programmed cell death, as evidenced by increased levels of apoptosis after 48 hours. Interestingly, the expression of CXCR-4 was significantly upregulated in response to the carrageenan/soy protein treatment. However, this increase in CXCR-4 expression was associated with elevated apoptosis levels and reduced cell proliferation. Both apoptosis and cell proliferation were enhanced when CXCR-4 expression levels decreased after 48 and 72 hours. Notably, the highest expression of CXCR-4 was observed at 24 hours of treatment compared to later time points. The results underscore the therapeutic potential of carrageenan and soy protein in colon cancer by targeting CXCR-4 expression, requiring further research for comprehensive understanding.


Downloads: 171
Views: 1076

How to cite:
Vancouver
El Hadad S, Alzahrani S, Alhebshi A, Alrahimi J. Impact of Carrageenan-Soy Protein Combination on CXCR-4 Expression, Cell Viability, and Apoptosis in HCT-116 Cells. Arch Pharm Pract. 2024;15(1):53-62. https://doi.org/10.51847/CZ6T8kG5lr
APA
El Hadad, S., Alzahrani, S., Alhebshi, A., & Alrahimi, J. (2024). Impact of Carrageenan-Soy Protein Combination on CXCR-4 Expression, Cell Viability, and Apoptosis in HCT-116 Cells. Archives of Pharmacy Practice, 15(1), 53-62. https://doi.org/10.51847/CZ6T8kG5lr

Download Citation
References
  1. Kawaguchi N, Zhang TT, Nakanishi T. Involvement of CXCR4 in normal and abnormal development. Cells. 2019;8(2):185. doi:10.3390/cells8020185
  2. Bianchi ME, Mezzapelle R. The chemokine receptor cxcr4 in cell proliferation and tissue regeneration. Front Immunol, 2020;11:2109.
  3. Shi Y, Riese DJ 2nd, Shen J. The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front Pharmacol. 2020;11:574667. doi:10.3389/fphar.2020.574667
  4. Khare T, Bissonnette M, Khare S. CXCL12-CXCR4/CXCR7 axis in colorectal cancer: Therapeutic target in preclinical and clinical studies. Int J Mol Sci. 2021;22(14):7371. doi:10.3390/ijms22147371
  5. Wali AF, Majid S, Rasool S, Shehada SB, Abdulkareem SK, Firdous A, et al. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm J. 2019;27(6):767-77. doi:10.1016/j.jsps.2019.04.013
  6. Xu SY, Huang X, Cheong KL. Recent advances in marine algae polysaccharides: Isolation, structure, and activities. Mar Drugs. 2017;15(12):388. doi:10.3390/md15120388
  7. Guo R, Chen M, DingY, Yang P, Wang M, Zhang H, et al. Polysaccharides as potential anti-tumor biomacromolecules -A review. Front Nutr. 2022;9:838179.
  8. Liu Z, Gao T, Yang Y, Meng F, Zhan F, Jiang Q, et al. Anti-cancer activity of porphyrin and carrageenan from red seaweeds. Molecules. 2019;24(23):4286. doi:10.3390/molecules24234286
  9. Chen D, Wu XZ, Wen ZY. Sulfated polysaccharides and immune response: Promoter or inhibitor? Panminerva Med. 2008;50(2):177-83.
  10. do Prado FG, Pagnoncelli MGB, de Melo Pereira GV, Karp SG, Soccol CR. Fermented soy products and their potential health benefits: A review. Microorganisms. 2022;10(8):1606. doi:10.3390/microorganisms10081606
  11. Kim IS, Yang WS, Kim CH. Beneficial effects of soybean-derived bioactive peptides. Int J Mol Sci. 2021;22(16):8570. doi:10.3390/ijms22168570
  12. Belobrajdic DP, James-Martin G, Jones D, Tran CD. Soy and gastrointestinal health: A review. Nutrients. 2023;15(8):1959. doi:10.3390/nu15081959
  13. Badger TM, Ronis MJ, Simmen RC, Simmen FA. Soy protein isolate and protection against cancer. J Am Coll Nutr. 2005;24(2):146S-9. doi:10.1080/07315724.2005.10719456
  14. Taylor CK, Levy RM, Elliott JC, Burnett BP. The effect of genistein aglycone on cancer and cancer risk: A review of in vitro, preclinical, and clinical studies. Nutr Rev. 2009;67(7):398-415. doi:10.1111/j.1753-4887.2009.00213.x
  15. Hsiao YC, Peng SF, Lai KC, Liao CL, Huang YP, Lin CC, et al. Genistein induces apoptosis in vitro and has antitumor activity against human leukemia HL-60 cancer cell xenograft growth in vivo. Environ Toxicol. 2019;34(4):443-56. doi:10.1002/tox.22698
  16. Hou S. Genistein: Therapeutic and preventive effects, mechanisms, and clinical application in digestive tract tumor. Evid Based Complement Alternat Med. 2022;2022:5957378. doi:10.1155/2022/5957378
  17. Islam MR, Akash S, Rahman MM, Nowrin FT, Akter T, Shohag S, et al. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chem Biol Interact. 2022;368:110170. doi:10.1016/j.cbi.2022.110170
  18. Malki A, ElRuz RA, Gupta I, Allouch A, Vranic S, Al Moustafa AE. Molecular mechanisms of colon cancer progression and metastasis: Recent insights and advancements. Int J Mol Sci. 2020;22(1):130. doi:10.3390/ijms22010130
  19. Pothuraju R, Chaudhary S, Rachagani S, Kaur S, Roy HK, Bouvet M, et al. Mucins, gut microbiota, and postbiotics role in colorectal cancer. Gut Microbes. 2021;13(1):1974795. doi:10.1080/19490976.2021.1974795
  20. Lee YJ, Cho JM, Sai S, Oh JY, Park JA, Oh SJ, et al. 5-Fluorouracil as a tumor-treating field-sensitizer in colon cancer therapy. Cancers (Basel). 2019;11(12):1999. doi:10.3390/cancers11121999
  21. Ortiz R, Cabeza L, Arias JL, Melguizo C, Álvarez PJ, Vélez C, et al. Poly(butyl cyanoacrylate) and Poly(ε-caprolactone) Nanoparticles loaded with 5-fluorouracil increase the cytotoxic effect of the drug in experimental colon cancer. AAPS J. 2015;17(4):918-29. doi:10.1208/s12248-015-9761-5
  22. Janardhanam LSL, Indukuri VV, Verma P, Dusane AC, Venuganti VVK. Functionalized layer-by-layer assembled film with directional 5-fluorouracil release to target colon cancer. Mater Sci Eng C Mater Biol Appl. 2020;115:111118. doi:10.1016/j.msec.2020.111118
  23. Varghese V, Magnani L, Harada-Shoji N, Mauri F, Szydlo RM, Yao S, et al. FOXM1 modulates 5-FU resistance in colorectal cancer through regulating TYMS expression. Sci Rep. 2019;9(1):1505. doi:10.1038/s41598-018-38017-0
  24. Hadad SE, Alsolami M, Aldahlawi A, Alrahimi J, Basingab F, Hassoubah S, et al. In vivo evidence: Repression of mucosal immune responses in mice with colon cancer following sustained administration of streptococcus thermophiles. Saudi J Biol Sci. 2021;28(8):4751-61. doi:10.1016/j.sjbs.2021.04.090
  25. El Hadad S, Zakareya A, Al-Hejin A, Aldahlawi A, Alharbi M. Sustaining exposure to high concentrations of bifidobacteria inhibits gene expression of mouse's mucosal immunity. Heliyon. 2019;5(12):e02866. doi:10.1016/j.heliyon.2019.e02866
  26. Végran F, Boidot R, Bonnetain F, Cadouot M, Chevrier S, Lizard-Nacol S. Apoptosis gene signature of Survivin and its splice variant expression in breast carcinoma. Endocr Relat Cancer. 2011;18(6):783-92. doi:10.1530/ERC-11-0105
  27. Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, et al. Nutraceuticals and Cancer: Potential for natural polyphenols. Nutrients. 2021;13(11):3834. doi:10.3390/nu13113834
  28. Shin DY, Lee WS, Lu JN, Kang MH, Ryu CH, Kim GY, et al. Induction of apoptosis in human colon cancer HCT-116 cells by anthocyanins through suppression of Akt and activation of p38-MAPK. Int J Oncol. 2009;35(6):1499-504. doi:10.3892/ijo_00000469
  29. Almajali B, Al-Jamal HAN, Taib WRW, Ismail I, Johan MF, Doolaanea AA, et al. Thymoquinone, as a novel therapeutic candidate of cancers. Pharmaceuticals (Basel). 2021;14(4):369. doi:10.3390/ph14040369
  30. Burton GJ, Jauniaux E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 2011;25(3):287-99. doi:10.1016/j.bpobgyn.2010.10.016
  31. Pfeffer CM, Singh ATK. Apoptosis: A target for anticancer therapy. Int J Mol Sci. 2018;19(2):448. doi:10.3390/ijms19020448
  32. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17(7):395-417. doi:10.1038/s41571-020-0341-y
  33. Hefnawy HT, Ramadan MF. Physicochemical characteristics of soy protein isolate and fenugreek gum dispersed systems. J Food Sci Technol. 2011;48(3):371-7. doi:10.1007/s13197-010-0203-1
  34. Prasedya ES, Miyake M, Kobayashi D, Hazama A. Carrageenan delays cell cycle progression in human cancer cells in vitro demonstrated by FUCCI imaging. BMC Complement Altern Med. 2016;16:270. doi:10.1186/s12906-016-1199-5
  35. Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. doi:10.1080/01926230701320337
  36. Ismail NI, Othman I, Abas F, H Lajis N, Naidu R. Mechanism of apoptosis induced by curcumin in colorectal cancer. Int J Mol Sci. 2019;20(10):2454. doi:10.3390/ijms20102454
  37. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486-541. doi:10.1038/s41418-017-0012-4
  38. Yue J, López JM. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci. 2020;21(7):2346. doi:10.3390/ijms21072346
  39. Thorp EB. Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis. 2010;15(9):1124-36. doi:10.1007/s10495-010-0516-6
  40. Mukherjee D, Zhao J. The role of chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer Res. 2013;3(1):46-57.
  41. Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31-82. doi:10.1016/B978-0-12-411638-2.00002-1
  42. Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, et al. CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 2010;29(4):709-22. doi:10.1007/s10555-010-9256-x
  43. Shen C, Li J, Li R, Ma Z, Tao Y, Zhang Q, et al. Effects of tumor-derived DNA on CXCL12-CXCR4 and CCL21-CCR7 axes of hepatocellular carcinoma cells and the regulation of sinomenine hydrochloride. Front Oncol. 2022;12:901705. doi:10.3389/fonc.2022.901705
  44. Zhou W, Guo S, Liu M, Burow ME, Wang G. Targeting CXCL12/CXCR4 axis in tumor immunotherapy. Curr Med Chem. 2019;26(17):3026-41. doi:10.2174/0929867324666170830111531
  45. Geng Z, Chen M, Yu Q, Guo S, Chen T, Liu D. Histone modification of colorectal cancer by natural products. Pharmaceuticals (Basel). 2023;16(8):1095. doi:10.3390/ph16081095
  46. Kremer KN, Peterson KL, Schneider PA, Meng XW, Dai H, Hess AD, et al. CXCR4 chemokine receptor signaling induces apoptosis in acute myeloid leukemia cells via regulation of the Bcl-2 family members Bcl-XL, Noxa, and Bak. J Biol Chem. 2013;288(32):22899-914. doi:10.1074/jbc.M113.449926

 

 

 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.