Archive \ Volume.15 2024 Issue 3

The Mineral Preparation Dibeston: The Effect on the State of Excretory Kidney Function in Diabetes Mellitus

, , , , , , ,
  1. Department of Therapy, Faculty of Therapy, Dagestan State Medical University, Makhachkala, Russia.
  2. Department of Pediatrics, Faculty of Pediatrics, Russian National Research Medical University named after N.I. Pirogov, Moscow, Russia.


Abstract

Diabetes mellitus is one of the most common diseases in modern society, and by 2030, according to the World Health Organization, it may reach the seventh place in the ranking of the main causes of death of the population. To optimize the treatment of diabetes mellitus, various mineral complexes can be used. This scientific article reveals the potential of the action of the new mineral preparation Dibeston on the state of excretory kidney function in alloxan diabetes. An experiment was conducted on 40 white laboratory rats divided into five groups: group 1 - intact; group 2 - controls with alloxan diabetes; group 3 - alloxan diabetes - Dibeston; group 4 - alloxan diabetes + Asparkam; group 5 - alloxan diabetes + selenium preparation. The levels of glycemia, creatinine, polyuria, and proteinuria were studied. It was found that the drug Dibeston has a pronounced beneficial effect in case of impaired kidney function against the background of alloxan diabetes mellitus.


Downloads: 30
Views: 149

How to cite:
Vancouver
Musakaev DA, Shaikhalov MA, Asvarova DG, Bagandalieva AM, Pomortsev NA, Ayubova AS, et al. The Mineral Preparation Dibeston: The Effect on the State of Excretory Kidney Function in Diabetes Mellitus. Arch Pharm Pract. 2024;15(3):13-6. https://doi.org/10.51847/qj30frczgF
APA
Musakaev, D. A., Shaikhalov, M. A., Asvarova, D. G., Bagandalieva, A. M., Pomortsev, N. A., Ayubova, A. S., Rasulova, D. R., & Bolatova, E. Y. (2024). The Mineral Preparation Dibeston: The Effect on the State of Excretory Kidney Function in Diabetes Mellitus. Archives of Pharmacy Practice, 15(3), 13-16. https://doi.org/10.51847/qj30frczgF

Download Citation
References
  1. Whicher CA, O'Neill S, Holt RIG. Diabetes in the UK: 2019. Diabet Med. 2020;37(2):242-7. doi:10.1111/dme.14225
  2. Nomura A, Noguchi M, Kometani M, Furukawa K, Yoneda T. Artificial intelligence in current diabetes management and prediction. Curr Diab Rep. 2021;21(12):61. doi:10.1007/s11892-021-01423-2
  3. Kasim S, Al‐Dabbagh B, Mustafa Y. A review on the biological potentials of carbazole and its derived products. J Med Pharm Chem Res. 2022;4(6):495-512.
  4. Thipsawat S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diab Vasc Dis Res. 2021;18(6):14791641211058856. doi:10.1177/14791641211058856
  5. Sagoo MK, Gnudi L. Diabetic nephropathy: An overview. Methods Mol Biol. 2020;2067:3-7. doi:10.1007/978-1-4939-9841-8_1
  6. Opazo-Ríos L, Mas S, Marín-Royo G, Mezzano S, Gómez-Guerrero C, Moreno JA, et al. Lipotoxicity and diabetic nephropathy: Novel mechanistic insights and therapeutic opportunities. Int J Mol Sci. 2020;21(7):2632. doi:10.3390/ijms21072632
  7. Kolarić V, Svirčević V, Bijuk R, Zupančič V. Chronic complications of diabetes and quality of life. Acta Clin Croat. 2022;61(3):520-7. doi:10.20471/acc.2022.61.03.18
  8. Harreiter J, Roden M. Diabetes mellitus: Definition, classification, diagnosis, screening and prevention (Update 2023). Wien Klin Wochenschr. 2023;135(Suppl 1):7-17. [In German]. doi:10.1007/s00508-022-02122-y
  9. Ma CX, Ma XN, Guan CH, Li YD, Mauricio D, Fu SB. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management. Cardiovasc Diabetol. 2022;21(1):74. doi:10.1186/s12933-022-01516-6
  10. Kiss LZ, Bagyura Z, Vadas R, Polgár L, Lux Á, Édes E, et al. Signs of subclinical atherosclerosis in asymptomatic patients at increased risk of type 2 diabetes mellitus. J Diabetes Complications. 2017;31(8):1293-8. doi:10.1016/j.jdiacomp.2017.05.007
  11. Dulyapach K, Ngamchaliew P, Vichitkunakorn P, Sornsenee P, Choomalee K. Prevalence and associated factors of delayed diagnosis of type 2 diabetes mellitus in a tertiary hospital: A retrospective cohort study. Int J Public Health. 2022;67:1605039. doi:10.3389/ijph.2022.1605039
  12. Zhou Z, Sun B, Yu D, Zhu C. Gut microbiota: An important player in type 2 diabetes mellitus. Front Cell Infect Microbiol. 2022;12:834485. doi:10.3389/fcimb.2022.834485
  13. Creţu D, Cernea S, Onea CR, Pop RM. Reproductive health in women with type 2 diabetes mellitus. Hormones (Athens). 2020;19(3):291-300. doi:10.1007/s42000-020-00225-7
  14. Boucsein A, Kamstra K, Tups A. Central signaling cross-talk between insulin and leptin in glucose and energy homeostasis. J Neuroendocrinol. 2021;33(4):e12944. doi:10.1111/jne.12944
  15. Amjad Hashim H, Al-Shammaa NMJ. The role of Irisin level hormone and some biochemical parameters in Iraqi diabetic type 2 with hypothyroidism. J Med Pharm Chem Res. 2022;4(9):900-9.
  16. Vatier C, Jéru I, Fellahi S, Capeau J, Bastard JP, Vigouroux C, et al. Leptin, adiponectin, lipodystrophic and severe insulin resistance syndromes. Ann Biol Clin (Paris). 2020;78(3):261-4. [In French]. doi:10.1684/abc.2020.1551
  17. Russo B, Menduni M, Borboni P, Picconi F, Frontoni S. Autonomic nervous system in obesity and insulin-resistance-the complex interplay between leptin and central nervous system. Int J Mol Sci. 2021;22(10):5187. doi:10.3390/ijms22105187
  18. Hong S, Shinya Y, Trejo-Lopez JA, Gruber LM, Erickson D, Bendok BR, et al. The clinical presentation of PIT1 positive pituitary neuroendocrine tumor immunonegative for growth hormone, prolactin, and thyroid stimulating hormone with analysis of clinical and immunostaining dissociation. Clin Neurol Neurosurg. 2024;236:108075. doi:10.1016/j.clineuro.2023.108075
  19. Prévot V, Tena-Sempere M, Pitteloud N. New horizons: Gonadotropin-releasing hormone and cognition. J Clin Endocrinol Metab. 2023;108(11):2747-58. doi:10.1210/clinem/dgad319
  20. Sadovoy VV, Selimov M, Shchedrina T, Nagdalian AA. Nutritional supplement for control of diabetes. J Excip Food Chem. 2017;8352017:1843.
  21. Ferreira-Hermosillo A, de Miguel Ibañez R, Pérez-Dionisio EK, Villalobos-Mata KA. Obesity as a neuroendocrine disorder. Arch Med Res. 2023;54(8):102896. doi:10.1016/j.arcmed.2023.102896
  22. Murray SL, Holton KF. Post-traumatic stress disorder may set the neurobiological stage for eating disorders: A focus on glutamatergic dysfunction. Appetite. 2021;167:105599. doi:10.1016/j.appet.2021.105599
  23. Cascino G, Monteleone AM. Early traumatic experiences and the hypothalamus-pituitary-adrenal axis in people with eating disorders: A narrative review. Psychoneuroendocrinology. 2024;159:106665. doi:10.1016/j.psyneuen.2023.106665
  24. Nauck MA, Wefers J, Meier JJ. Treatment of type 2 diabetes: Challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol. 2021;9(8):525-44. doi:10.1016/S2213-8587(21)00113-3
  25. Sadovoy VV, Selimov MA, Slichedrina TV, Nagdalian AA. Usage of biological active supplements in technology of prophilactic meat products. Res J Pharm Biol Chem Sci. 2016;7(5):1861-5.
  26. Lyashenko EN, Uzbekova LD, Polovinkina VV, Dorofeeva AK, Ibragimov SS, Tatamov AA, et al. Study of the embryonic toxicity of TiO2 and ZrO2 nanoparticles. Micromachines (Basel). 2023;14(2):363. doi:10.3390/mi14020363
  27. Verevkina M, Goncharov V, Nesmeyanov E, Kamalova O, Baklanov I, Pokhilko A, et al. Application of the Se NPs-Chitosan molecular complex for the correction of selenium deficiency in rats model. Potr S J Food Sci. 2023;17(1):455-66. doi:10.5219/1871
  28.  Belyaev NG, Rzhepakovsky IV, Timchenko LD, Areshidze DA, Simonov AN, Nagdalian AA, et al. Effect of training on femur mineral density of rats. Biochem Cell Arch. 2019;19(2):3549-52.
  29.  El Sadik A, Alrehaili J, Elzainy A. Comparison of the therapeutic role of sublethal doses of selenium nanoparticles in renal inflammation and apoptosis. J Med Pharm Chem Res. 2024;6(11):1725-39. doi:10.48309/jmpcr.2024.453230.1194
  30. Amalia A, Hendarto H, Mustika A. Nigella sativa ameliorates folliculogenesis disorders due to exposure to cigarette smoke through gnrh, mda expression, estrogen expression, GDF-9 expression, apoptosis expression, and ovarian follicles. J Med Pharm Chem Res. 2024;6(7):997-1009. doi:10.48309/jmpcr.2024.444235.1122
  31. Salemkour Y, Yildiz D, Dionet L, 't Hart DC, Verheijden KAT, Saito R, et al. Podocyte injury in diabetic kidney disease in mouse models involves TRPC6-mediated calpain activation impairing autophagy. J Am Soc Nephrol. 2023;34(11):1823-42. doi:10.1681/ASN.0000000000000212
  32. Pugliese G, Penno G, Natali A, Barutta F, Di Paolo S, Reboldi G, et al. Diabetic kidney disease: New clinical and therapeutic issues. Joint position statement of the Italian diabetes society and the Italian society of nephrology on "The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function". Nutr Metab Cardiovasc Dis. 2019;29(11):1127-50. doi:10.1016/j.numecd.2019.07.017
  33. Jia G, Sowers JR. Hypertension in diabetes: An update of basic mechanisms and clinical disease. Hypertension. 2021;78(5):1197-205. doi:10.1161/HYPERTENSIONAHA.121.1798

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.