Archive \ Volume.15 2024 Issue 2

Development of an Innovative Surgical Suture Material That Prevents the Formation of Arterial Thrombosis

, , , , , , ,
  1. Department of Therapy, Medical Institute, Chechen State University named after A.A. Kadyrov, Grozny, Russia.

  2. Department of Therapy, Medical Institute, Ingush State University, Magas, Russia.
  3. Department of Therapy, Medical Institute, North Ossetian State Medical Academy, Vladikavkaz, Russia.
  4. Department of Therapy, Medical Institute, Kabardino-Balkarian State University named after Kh. M. Berbekov, Nalchik, Russia.  


Abstract

One of the most serious complications after surgical interventions on the arteries of the lower extremities is thrombosis of the vascular prosthesis. Unfortunately, it is almost impossible to protect the patient from contact with the surgical thread with flowing blood, which makes the location of the surgical operation a focus of thrombosis. The purpose of this scientific study is to evaluate the possibility of modifying the surface of a polypropylene thread with heparin using chemical inoculation in order to increase the thromboresistant properties of the suture material. To do this, a polyhydroxybutyrate/oxivalerate copolymer and a heparin solution were applied to the surface of the polypropylene filament. An additional sublayer of polymethacrylyl chloride contributed to the strong inoculation of heparin to the polymer. The polymer substrate reacted with heparin to form strong covalent ester bonds. Applying a thin and uniform layer of polyhydroxybutyrate/oxivalerate to the thread with a thickness of no more than 4 microns makes its surface smooth. After chemical modification and application of heparin to the surface of the thread, it acquired a uniform spongy structure, due to the formation of a new polymer layer with firmly grafted heparin. Thus, it is possible to create a bio- and hemocompatible coating based on a biodegradable polymer and heparin on the surface of a polypropylene thread.


Downloads: 143
Views: 1033

How to cite:
Vancouver
Yusupkhadzhieva ZV, Yandieva ZI, Arsanova SV, Shovkhalova SM, Gogunokova DM, Gatsaeva KO, et al. Development of an Innovative Surgical Suture Material That Prevents the Formation of Arterial Thrombosis. Arch Pharm Pract. 2024;15(2):97-101. https://doi.org/10.51847/WKFcFj9u7L
APA
Yusupkhadzhieva, Z. V., Yandieva, Z. I., Arsanova, S. V., Shovkhalova, S. M., Gogunokova, D. M., Gatsaeva, K. O., Tsatsieva, R. I., & Umakhanova, R. J. (2024). Development of an Innovative Surgical Suture Material That Prevents the Formation of Arterial Thrombosis. Archives of Pharmacy Practice, 15(2), 97-101. https://doi.org/10.51847/WKFcFj9u7L

Download Citation
References
  1. Gantz O, Mulles S, Zagadailov P, Merchant AM. Incidence and cost of deep vein thrombosis in emergency general surgery over 15 years. J Surg Res. 2020;252:125-32. doi:10.1016/j.jss.2020.03.022
  2. Hummel T, Aryafar A, Mayböck N, Mumme A, Stücker M, Mühlberger D. Quality of life after varicose vein surgery in patients with high-ligation and stripping, external valvuloplasty and sapheno-femoral redo surgery. Ann Vasc Surg. 2021;74:331-8. doi:10.1016/j.avsg.2020.12.057
  3. Cao MT, Higuchi R, Yazawa T, Uemura S, Izumo W, Matsunaga Y, et al. Narrowing of the remnant portal vein diameter and decreased portal vein angle are risk factors for portal vein thrombosis after perihilar cholangiocarcinoma surgery. Langenbecks Arch Surg. 2021;406(5):1511-9. doi:10.1007/s00423-020-02044-1
  4. Dresing K, Slongo T. Surgical suture material-fundamentals. Oper Orthop Traumatol. 2023;35(5):298-316. [In German]. doi:10.1007/s00064-023-00812-y
  5. Lekic N, Dodds SD. Suture materials, needles, and methods of skin closure: What every hand surgeon should know. J Hand Surg Am. 2022;47(2):160-71. doi:10.1016/j.jhsa.2021.09.019
  6. Bartlett MA, Mauck KF, Stephenson CR, Ganesh R, Daniels PR. Perioperative venous thromboembolism prophylaxis. Mayo Clin Proc. 2020;95(12):2775-98. doi:10.1016/j.mayocp.2020.06.015
  7. Lin HY, Lin CY, Huang YC, Hsieh HN, Yang YW, Chang IL, et al. Deep vein thrombosis after major orthopedic surgery in Taiwan: A prospective cross-sectional study and literature review. J Formos Med Assoc. 2022;121(8):1541-9. doi:10.1016/j.jfma.2021.12.027
  8. Carlin AM, Varban OA, Ehlers AP, Bonham AJ, Ghaferi AA, Finks JF. Independent predictors and timing of portomesenteric vein thrombosis after bariatric surgery. Surg Obes Relat Dis. 2022;18(12):1385-91. doi:10.1016/j.soard.2022.07.016
  9. Pesset CM, Fonseca COD, Antunes M, Santos ALLD, Teixeira IM, Ribeiro TAN, et al. Characterizing biofilm formation of Staphylococcus pseudintermedius in different suture materials. Microb Pathog. 2022;172:105796. doi:10.1016/j.micpath.2022.105796
  10. Fonticoli L, Diomede F, Nanci A, Fontana A, Della Rocca Y, Guadarrama Bello D, et al. Enriched graphene oxide-polypropylene suture threads buttons modulate the inflammatory pathway induced by Escherichia coli lipopolysaccharide. Int J Mol Sci. 2023;24(7):6622. doi:10.3390/ijms24076622
  11. Halepas S, Chen XJ, Ferneini EM. Thread-lift sutures: Anatomy, technique, and review of current literature. J Oral Maxillofac Surg. 2020;78(5):813-20. doi:10.1016/j.joms.2019.11.011
  12. Gu Y, Yang J, Yang GZ. Towards occlusion-aware pose estimation of surgical suturing threads. IEEE Trans Biomed Eng. 2023;70(2):581-91. doi:10.1109/TBME.2022.3198402
  13. Khalid GM, Billa N. Drug-eluting sutures by hot-melt extrusion: Current trends and future potentials. Materials (Basel). 2023;16(22):7245. doi:10.3390/ma16227245
  14. Blinov AV, Nagdalian AA, Povetkin SN, Gvozdenko AA, Verevkina MN, Rzhepakovsky IV, et al. Surface-oxidized polymer-stabilized silver nanoparticles as a covering component of suture materials. Micromachines (Basel). 2022;13(7):1105. doi:10.3390/mi13071105
  15. Fawzy H, Hendawy D, Ghareeb M, Amer M, Sameh H, Mosaad H. The value of plasma mir 126 and miR 423-3p levels in the prediction of subclinical atherosclerotic coronary artery disease. J Med Pharm Chem Res. 2024;6(5):609-22. doi:10.48309/jmpcr.2024.428610.1050
  16. Whiteley W, Wood A. Risk of arterial and venous thromboses after COVID-19. Lancet Infect Dis. 2022;22(8):1093-4. doi:10.1016/S1473-3099(22)00314-0
  17. Borhani-Haghighi A, Hooshmandi E. Cerebral venous thrombosis: A practical review. Postgrad Med J. 2024;100(1180):68-83. doi:10.1093/postmj/qgad103
  18. Baranga L, Khanuja S, Scott JA, Provancha I, Gosselin M, Walsh J, et al. In situ pulmonary arterial thrombosis: Literature review and clinical significance of a distinct entity. AJR Am J Roentgenol. 2023;221(1):57-68. doi:10.2214/AJR.23.28996
  19. de Winter MA, Dorresteijn JAN, Ageno W, Ay C, Beyer-Westendorf J, Coppens M, et al. Estimating bleeding risk in patients with cancer-associated thrombosis: Evaluation of existing risk scores and development of a new risk score. Thromb Haemost. 2022;122(5):818-29. doi:10.1055/s-0041-1735251
  20. Tang G, Qi L, Sun Z, Liu J, Lv Z, Chen L, et al. Evaluation and analysis of incidence and risk factors of lower extremity venous thrombosis after urologic surgeries: A prospective two-center cohort study using LASSO-logistic regression. Int J Surg. 2021;89:105948. doi:10.1016/j.ijsu.2021.105948
  21. Peng G, Wang Q, Sun H, Gan L, Lu H, Deng Z, et al. Development and prospective validation of a novel risk score for predicting the risk of lower extremity deep vein thrombosis among multiple trauma patients. Thromb Res. 2021;201:116-22. doi:10.1016/j.thromres.2021.02.020
  22. Pastori D, Cormaci VM, Marucci S, Franchino G, Del Sole F, Capozza A, et al. A comprehensive review of risk factors for venous thromboembolism: From epidemiology to pathophysiology. Int J Mol Sci. 2023;24(4):3169. doi:10.3390/ijms24043169
  23. Setyawati AN. The role of oxidative stress in hypoalbubimenia nephropathy related to Nephrotic syndrome: A critical review. J Med Pharm Chem Res. 2024;6(1):32-49. doi:10.48309/jmpcr.2024.182755
  24. Andreotti F, Massetti M, Montalescot G. Thrombosis, bleeding, and the promise of factor XI(a) inhibition. J Am Coll Cardiol. 2024;83(6):679-81. doi:10.1016/j.jacc.2023.12.003
  25. Rubino R, Imburgia C, Bonura S, Trizzino M, Iaria C, Cascio A. Thromboembolic events in patients with influenza: A scoping review. Viruses. 2022;14(12):2817. doi:10.3390/v14122817
  26. Khan SU, Agarwal S, Arshad HB, Akbar UA, Mamas MA, Arora S, et al. Intravascular imaging guided versus coronary angiography guided percutaneous coronary intervention: Systematic review and meta-analysis. BMJ. 2023;383:e077848. doi:10.1136/bmj-2023-077848
  27. Bai M, Lu A, Pan C, Hu S, Qu W, Zhao J, et al. Veno-arterial extracorporeal membrane oxygenation in elective high-risk percutaneous coronary interventions. Front Med (Lausanne). 2022;9:913403. doi:10.3389/fmed.2022.913403
  28. Asmis L, Hellstern P. Thrombophilia testing - A systematic review. Clin Lab. 2023;69(4). doi:10.7754/Clin.Lab.2022.220817
  29. Lauridsen SV, Hvas CL, Sandgaard E, Gyldenholm T, Mikkelsen R, Obbekjær T, et al. Thromboelastometry shows early hypercoagulation in patients with spontaneous subarachnoid hemorrhage. World Neurosurg. 2019;130:e140-9. doi:10.1016/j.wneu.2019.06.019
  30. Marlar RA. Laboratory evaluation of thrombophilia. Methods Mol Biol. 2023;2663:177-201. doi:10.1007/978-1-0716-3175-1_10
  31. Raman K, Arungundram S. Chemical approaches to prepare modified heparin and heparosan polymers for biological studies. Methods Mol Biol. 2022;2303:289-96. doi:10.1007/978-1-0716-1398-6_23
  32. Qian Y, Zhang J, Xu R, Li Q, Shen Q, Zhu G. Nanoparticles based on polymers modified with pH-sensitive molecular switch and low molecular weight heparin carrying Celastrol and ferrocene for breast cancer treatment. Int J Biol Macromol. 2021;183:2215-26. doi:10.1016/j.ijbiomac.2021.05.204
  33. Kocak FZ, Yar M, Rehman IU. Hydroxyapatite-integrated, heparin- and glycerol-functionalized chitosan-based injectable hydrogels with improved mechanical and proangiogenic performance. Int J Mol Sci. 2022;23(10):5370. doi:10.3390/ijms23105370
  34. Gupta S, Puttaiahgowda YM, Deiglmayr L. Recent advances in the design and immobilization of heparin for biomedical application: A review. Int J Biol Macromol. 2024;264(Pt 2):130743. doi:10.1016/j.ijbiomac.2024.130743
  35. Mahmood DA, Kareem MM, Witwit IN. New n-substituted itaconimide polymers: Synthesis, characterization, and biological activity. J Med Pharm Chem Res. 2023;5(9):866-84.
  36. Giubertoni G, Rombouts G, Caporaletti F, Deblais A, van Diest R, Reek JNH, et al. Infrared diffusion-ordered spectroscopy reveals molecular size and structure. Angew Chem Int Ed Engl. 2023;62(2):e202213424. doi:10.1002/anie.202213424
  37. Caggiani MC, Occhipinti R, Finocchiaro C, Fugazzotto M, Stroscio A, Mazzoleni P, et al. Diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) as a potential on-site tool to test geopolymerization reaction. Talanta. 2022;250:123721. doi:10.1016/j.talanta.2022.123721

 

 

 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.