Archive \ Volume.15 2024 Issue 4

Investigation of Pharmacological and Wound-Healing Properties of Zinc Oxide Nanoparticles

, , , , , , ,
  1. Department of Therapy, Faculty of Medicine, Astrakhan State Medical University, Astrakhan, Russia.
  2. Department of Pediatrics, City children's polyclinic No.1 , Stavropol, Russia.

  3. Department of Therapy, Faculty of Medicine, North Ossetian State Medical Academy, Vladikavkaz, Russia.

  4. Department of Therapy, Faculty of Medicine, North Ossetian State University, Vladikavkaz, Russia.
  5. Department of Therapy, Faculty of Medicine, Dagestan State Medical University, Makhachkala, Russia.

Abstract

A comparative analysis of the specific pharmacological activity and wound-healing properties of zinc oxide nanoparticles (ZnO-NPs) was carried out. It has been shown that ZnO-NP forms reduce the severity of formalin paw edema in mice and the exudative reaction in "felt" granuloma in rats. Notably, the effectiveness of the ointment form exceeded the effectiveness of the gel form. The ability of ointment and gel based on ZnO-NPs has been shown to significantly reduce the recovery time of hemorrhagic soft tissue injuries in rats and, unlike medicinal forms of heparin, to increase the blood clotting time of rabbits by 1.25 times and 1.19 times, respectively. Thus, ointment and gel containing ZnO-NPs are potential medicines with anti-inflammatory, anticoagulant properties and the property of shortening the recovery time of hemorrhagic soft tissue injuries. It is concluded that the therapeutic effect of samples containing ZnO-NPs, due to the ability of these nanoparticles to penetrate the skin epithelium, providing regenerating and fibrinolytic activity, blocking the activity of inflammatory mediators and providing, including the systemic effect on blood clotting.


Downloads: 24
Views: 92

How to cite:
Vancouver
Usmaev BV, Kagermanov AT, Al-Rawashdeh MB, Shuaipova MM, Bestaeva KA, Arshieva VA, et al. Investigation of Pharmacological and Wound-Healing Properties of Zinc Oxide Nanoparticles. Arch Pharm Pract. 2024;15(4):10-4. https://doi.org/10.51847/BQ2peoCsFW
APA
Usmaev, B. V., Kagermanov, A. T., Al-Rawashdeh, M. B., Shuaipova, M. M., Bestaeva, K. A., Arshieva, V. A., Guseinova, S. G., & Alieva, K. M. (2024). Investigation of Pharmacological and Wound-Healing Properties of Zinc Oxide Nanoparticles. Archives of Pharmacy Practice, 15(4), 10-14. https://doi.org/10.51847/BQ2peoCsFW

Download Citation
References
  1. Hampton JP, Hommer K, Musselman M, Bilhimer M. Rapid sequence intubation and the role of the emergency medicine pharmacist: 2022 update. Am J Health Syst Pharm. 2023;80(4):182-95. doi:10.1093/ajhp/zxac326
  2. Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020;69(8):1510-9. doi:10.1136/gutjnl-2019-320204
  3. Meneghini M, Bestard O, Grinyo JM. Immunosuppressive drugs modes of action. Best Pract Res Clin Gastroenterol. 2021;54:101757. doi:10.1016/j.bpg.2021.101757
  4. Luethi D, Liechti ME. Designer drugs: Mechanism of action and adverse effects. Arch Toxicol. 2020;94(4):1085-133. doi:10.1007/s00204-020-02693-7. Epub 2020 Apr 6. Erratum in: Arch Toxicol. 2022;96(5):1489. doi:10.1007/s00204-022-03244-y
  5. Doytchinova I. Drug design-past, present, future. Molecules. 2022;27(5):1496. doi:10.3390/molecules27051496
  6. Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev. 2021;176:113851. doi:10.1016/j.addr.2021.113851
  7. Zagotto G, Bortoli M. Drug design: Where we are and future prospects. Molecules. 2021;26(22):7061. doi:10.3390/molecules26227061
  8. Umair Hassan M, Huang G, Haider FU, Khan TA, Noor MA, Luo F, et al. Application of zinc oxide nanoparticles to mitigate cadmium toxicity: Mechanisms and future prospects. Plants (Basel). 2024;13(12):1706. doi:10.3390/plants13121706
  9. Pushpalatha C, Suresh J, Gayathri VS, Sowmya SV, Augustine D, Alamoudi A, et al. Zinc Oxide nanoparticles: A review on its applications in dentistry. Front Bioeng Biotechnol. 2022;10:917990. doi:10.3389/fbioe.2022.917990
  10. Wiesmann N, Tremel W, Brieger J. Zinc oxide nanoparticles for therapeutic purposes in cancer medicine. J Mater Chem B. 2020;8(23):4973-89. doi:10.1039/d0tb00739k
  11. do Carmo Neto JR, Guerra RO, Machado JR, Silva ACA, da Silva MV. Antiprotozoal and anthelmintic activity of zinc oxide nanoparticles. Curr Med Chem. 2022;29(12):2127-41. doi:10.2174/0929867328666210709105850
  12. Mandal AK, Katuwal S, Tettey F, Gupta A, Bhattarai S, Jaisi S, et al. Current research on zinc oxide nanoparticles: Synthesis, characterization, and biomedical applications. Nanomaterials (Basel). 2022;12(17):3066. doi:10.3390/nano12173066
  13. Jha S, Rani R, Singh S. Biogenic zinc oxide nanoparticles and their biomedical applications: A review. J Inorg Organomet Polym Mater. 2023;33(6):1437-52. doi:10.1007/s10904-023-02550-x
  14. Alhujaily M, Albukhaty S, Yusuf M, Mohammed MKA, Sulaiman GM, Al-Karagoly H, et al. Recent advances in plant-mediated zinc oxide nanoparticles with their significant biomedical properties. Bioengineering (Basel). 2022;9(10):541. doi:10.3390/bioengineering9100541
  15. Gharpure S, Ankamwar B. Synthesis and antimicrobial properties of zinc oxide nanoparticles. J Nanosci Nanotechnol. 2020;20(10):5977-96. doi:10.1166/jnn.2020.18707
  16. Blinov AV, Kachanov MD, Gvozdenko AA, Nagdalian AA, Blinova AA, Rekhman ZA, et al. Synthesis and characterization of zinc oxide nanoparticles stabilized with biopolymers for application in wound-healing mixed gels. Gels. 2023;9(1):57. doi:10.3390/gels9010057
  17. Czyżowska A, Barbasz A. A review: Zinc oxide nanoparticles - friends or enemies? Int J Environ Health Res. 2022;32(4):885-901. doi:10.1080/09603123.2020.1805415
  18. Murali M, Kalegowda N, Gowtham HG, Ansari MA, Alomary MN, Alghamdi S, et al. Plant-Mediated zinc oxide nanoparticles: Advances in the new millennium towards understanding their therapeutic role in biomedical applications. Pharmaceutics. 2021;13(10):1662. doi:10.3390/pharmaceutics13101662
  19. Asif N, Amir M, Fatma T. Recent advances in the synthesis, characterization and biomedical applications of zinc oxide nanoparticles. Bioprocess Biosyst Eng. 2023;46(10):1377-98. doi:10.1007/s00449-023-02886-1
  20. Jin SE, Jin HE. Synthesis, characterization, and three-dimensional structure generation of zinc oxide-based nanomedicine for biomedical applications. Pharmaceutics. 2019;11(11):575. doi:10.3390/pharmaceutics11110575
  21. Petetta F, Ciccocioppo R. Public perception of laboratory animal testing: Historical, philosophical, and ethical view. Addict Biol. 2021;26(6):e12991. doi:10.1111/adb.12991
  22. Xia W, Huang ZJ, Shi N, Feng YW, Tang AZ. Dosage selection and effect evaluation of sodium pentobarbital in tree shrew anesthesia. Lab Anim. 2023;57(3):283-92. doi:10.1177/00236772221146419
  23. Lee IO, Jeong YS. Effects of different concentrations of formalin on paw edema and pain behaviors in rats. J Korean Med Sci. 2002;17(1):81-5. doi:10.3346/jkms.2002.17.1.81
  24. He B, Nan G. Pulmonary edema and hemorrhage after acute spinal cord injury in rats. Spine J. 2016;16(4):547-51. doi:10.1016/j.spinee.2015.11.065
  25. Appelt P, Gabriel P, Bölter C, Fiedler N, Schierle K, Salameh A, et al. Left ventricular depression and pulmonary edema in rats after short-term normobaric hypoxia: Effects of adrenergic blockade and reduced fluid load. Pflugers Arch. 2021;473(11):1723-35. doi:10.1007/s00424-021-02618-y
  26. Lye TH, Roshankhah R, Karbalaeisadegh Y, Montgomery SA, Egan TM, Muller M, et al. In vivo assessment of pulmonary fibrosis and edema in rodents using the backscatter coefficient and envelope statistics. J Acoust Soc Am. 2021;150(1):183. doi:10.1121/10.0005481
  27. Kalisvaart ACJ, Abrahart AH, Coney AT, Gu S, Colbourne F. Intracranial pressure dysfunction following severe intracerebral hemorrhage in middle-aged rats. Transl Stroke Res. 2023;14(6):970-86. doi:10.1007/s12975-022-01102-8
  28. Rzhepakovsky I, Piskov S, Avanesyan S, Shakhbanov M, Sizonenko M, Timchenko L, et al. High-performance microcomputing tomography of chick embryo in the early stages of embryogenesis. Appl Sci. 2023;13(19):10642. doi:10.3390/app131910642
  29. Nurfahri R, Wahyuni I, Nurwasis N, Legowo D, Dhiyantari NPAR, Cinthiadewi MDGA. Expression of Bax, Bcl-2, and Bax/Bcl-2 ratio of Rattus norvegicus lens epithelial cells as a new approach to compare the protective effects of anti-UV-B glasses and anti-UV-B contact lenses from UV-B radiation: True experimental study in animal models. J Med Pharm Chem Res. 2024;6(8):1237-47. doi:10.48309/jmpcr.2024.441731.1120
  30. Li W, Zhang G, Wei X. Lidocaine-loaded reduced graphene oxide hydrogel for prolongation of effects of local anesthesia: In vitro and in vivo analyses. J Biomater Appl. 2021;35(8):1034-42. doi:10.1177/0885328220988462
  31. Huss MK, Felt SA, Pacharinsak C. Influence of pain and analgesia on orthopedic and wound-healing models in rats and mice. Comp Med. 2019;69(6):535-45. doi:10.30802/AALAS-CM-19-000013
  32. Zafar S, Ashraf MM, Ali A, Aslam N, Ashraf A, Zafar S, et al. Effect of caffeine on the anti-clotting activity of warfarin in healthy male albino rabbits. Pak J Pharm Sci. 2018;31(2(Suppl.)):611-6.
  33. El-Bahr SM, Shousha S, Albokhadaim I, Shehab A, Khattab W, Ahmed-Farid O, et al. Impact of dietary zinc oxide nanoparticles on selected serum biomarkers, lipid peroxidation and tissue gene expression of antioxidant enzymes and cytokines in Japanese quail. BMC Vet Res. 2020;16(1):349. doi:10.1186/s12917-020-02482-5
  34. Erfani Majd N, Tabandeh MR, Hosseinifar S, Rahimi Zarneh S. Chemical and green ZnO nanoparticles ameliorated adverse effects of cisplatin on histological structure, antioxidant defense system and neurotrophins expression in rat hippocampus. J Chem Neuroanat. 2021;116:101990. doi:10.1016/j.jchemneu.2021.101990
  35. Yi C, Yu Z, Ren Q, Liu X, Wang Y, Sun X, et al. Nanoscale ZnO-based photosensitizers for photodynamic therapy. Photodiagnosis Photodyn Ther. 2020;30:101694. doi:10.1016/j.pdpdt.2020.101694
  36. Alavi M, Nokhodchi A. An overview of antimicrobial and wound healing properties of ZnO nano biofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydr Polym. 2020;227:115349. doi:10.1016/j.carbpol.2019.115349
  37. Dukhinova MS, Prilepskii AY, Shtil AA, Vinogradov VV. Metal oxide nanoparticles in therapeutic regulation of macrophage functions. Nanomaterials (Basel). 2019;9(11):1631. doi:10.3390/nano9111631
  38. Arslan K, Karahan O, Okuş A, Unlü Y, Eryılmaz MA, Ay S, et al. Comparison of topical zinc oxide and silver sulfadiazine in burn wounds: An experimental study. Ulus Travma Acil Cerrahi Derg. 2012;18(5):376-83. doi:10.5505/tjtes.2012.45381
  39. Melkumyan VA, Kurbanova DA, Magomedgadzhieva RS, Khidiryan MV, Eremin SA, Stepanenko VS, et al. Assessment of wound-healing activity of zinc oxide nanoparticles. J Adv Pharm Educ Res. 2024;14(1):73-6. doi:10.51847/0SQk1Cmx1X
  40. Elhabal SF, Abdelaal N, Saeed Al-Zuhairy SAK, Elrefai MFM, Elsaid Hamdan AM, Khalifa MM, et al. Green synthesis of zinc oxide nanoparticles from Althaea officinalis flower extract coated with chitosan for potential healing effects on diabetic wounds by inhibiting TNF-α and IL-6/IL-1β signaling pathways. Int J Nanomedicine. 2024;19:3045-70. doi:10.2147/IJN.S455270
  41. Verevkina M, Goncharov V, Nesmeyanov E, Kamalova O, Baklanov I, Pokhilko A, et al. Application of the Se NPs-Chitosan molecular complex for the correction of selenium deficiency in rats model. Potravinarstvo Slovak J Food Sci. 2023;17:455-66. doi:10.5219/1871
  42. Musaev K, Edelbieva M, Askhabova F, Dudko N, Daudova M, Sultanova K, et al. Harnessing the power of a zinc oxide nanoparticles against viral pathology of the cornea: In vitro assessment. J Med Pharm Chem Res. 2024;7(1):64-73. doi:10.48309/jmpcr.2025.455914.1216
  43. Noor S, Al-Shamari A. High photocatalytic performance of ZnO and ZnO/CdS nanostructures against reactive blue 4 dye. J Med Pharm Chem Res. 2023;5(9):776-93.
  44. Vornic I, Pop O, Pascalau A, Andreescu G, Beiusan C, Manole F, et al. Assessing the role of Bcl-2 and p53 in apoptotic mechanisms in spontaneous abortions. Pharmacophore. 2024;15(2):1-6. doi:10.51847/CO2qttSgIN
  45. Cachón-Rodríguez G, Blanco-González A, Prado-Román C, Del-Castillo-Feito C. Studying the pattern of employee loyalty based on social capital and sustainable human resource management. J Organ Behav Res. 2024;9(2):1-11. doi:10.51847/fN33v3jKBU
  46. Liu J, Cheng X, Zhang Y, Wang X, Zou Q, Fu L. Investigating the effectiveness of modified clinoptilolite zeolite on nitrate removal from aqueous solution. J Biochem Technol. 2024;15(3):8-14. doi:10.51847/Hob35EiM0b
  47. Afrand Khalil Abad Z, Dehbokri N, Heydari Z, Karimi P, Siadat SH, Pakmehr SA, et al. The role of oxidative stress in the occurrence of neurological diseases and cancer. Clin Cancer Investig J. 2024;13(4):1-6. doi:10.51847/XQOJjb4ziu
  48. Shinde AA, Tayade AY, Bajolge R, Khyade VB. Efficiency of the zingiberene for the qualitative silk. Entomol Appl Sci Lett. 2023;10(1):1-10. doi:10.51847/4hW3o5bgkY
  49. Padma KR, Don KR, Anjum MR, Sindhu GS, Sankari M. Application of green energy technology for environmental sustainability. World J Environ Biosci. 2023;12(4):1-7. doi:10.51847/bAMKAPPZGe
  50. Domatskiy VN, Sivkova EI. Ixodes ticks – carriers of pathogens of vector-borne infections. Int J Pharm Res Allied Sci. 2024;13(1):74-82. doi:10.51847/DuluVQOxsp

 

 

 

 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.