Archive \ Volume.15 2024 Issue 4

The Research Progress on Sports Applications in Osteoarthritis

, ,
  1. Henan Vocational College of Applied Technology, Zhengzhou, China.
  2. Guangdong nephrotic drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangzhou, China.


Abstract

Osteoarthritis is a form of age-related, non-inflammatory, degenerative joint disease. It is characterized by pain, swelling, and bone hyperplasia; osteoarthritis has a high morbidity and high disability rate, which has a significant impact on the quality of life of patients worldwide. Engaging in sports has been demonstrated to reduce the risk of developing obesity, diabetes mellitus, and other metabolic diseases, additionally, it has been shown to enhance muscle quality, stabilize joints, improve motor coordination abilities, reduce pain, and improve joint function in individuals with osteoarthritis, these findings highlight the potential for sports to play an important role in the management of osteoarthritis. In this review, we presented an overview of the pathogenesis of osteoarthritis, provided a summary of advancements in the utilization of sports in the management of osteoarthritis, and discussed the underlying mechanisms and future application limitations, hoping to provide the foundation for the prevention and treatment of osteoarthritis.


Downloads: 225
Views: 340

How to cite:
Vancouver
Liu L, Lin Z, Yang J. The Research Progress on Sports Applications in Osteoarthritis. Arch Pharm Pract. 2024;15(4):15-20. https://doi.org/10.51847/MYJ6y9fZOS
APA
Liu, L., Lin, Z., & Yang, J. (2024). The Research Progress on Sports Applications in Osteoarthritis. Archives of Pharmacy Practice, 15(4), 15-20. https://doi.org/10.51847/MYJ6y9fZOS

Download Citation
References
  1. Steinmetz JD, Culbreth GT, Haile LM, Rafferty Q, Lo J, Fukutaki KG, et al. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the global burden of disease study 2021. Lancet Rheumatol. 2023;5(9):e508-22.
  2. Dieppe PA, Lohmander LS. Pathogenesis and management of pain in osteoarthritis. Lancet. 2005;365(9463):965-73.
  3. Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthritis. Lancet. 2015;386(9991):376-87.
  4. Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, et al. Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072.
  5. Hawker GA, King LK. The burden of osteoarthritis in older adults. Clin Geriatr Med. 2022;38(2):181-92.
  6. Bhat R, Gopikrishna G, Krishna N, Prarthan P, Pradeep S, Shetty S, et al. Phytochemical constituent and anti-bacterial activity of tabernaemontana divaricata (dwarf) leaves. J Biochem Technol. 2024;15(1):46-51. doi:10.51847/a4HyCO9Yt7
  7. Ouazzani ME, Lahouaoui A, Boujguenna I, Mansouri N, Fakhri A, Rais H. Merkel cell carcinoma: A case report and review of literature. Clin Cancer Investig J. 2024;13(3):6-7. doi:10.51847/P4KB6Vp0ZD
  8. Whittaker JL, Losciale JM, Juhl CB, Thorlund JB, Lundberg M, Truong LK, et al. Risk factors for knee osteoarthritis after traumatic knee injury: A systematic review and meta-analysis of randomised controlled trials and cohort studies for the OPTIKNEE Consensus. Br Sports Med. 2022;56(24):1406-21.
  9. Giorgino R, Albano D, Fusco S, Peretti GM, Mangiavini L, Messina C. Knee osteoarthritis: Epidemiology, pathogenesis, and mesenchymal stem cells: What else is new? An update. Int J Mol Sci. 2023;24(7):6405.
  10. Polevoy GG. The development of endurance through prolonged running and its effect on the attention of 9-10-year-olds. Entomol Appl Sci Lett. 2023;10(1):65-75. doi:10.51847/2GXBEcgNwL
  11. Silva JD, Rosa GB, Sganzerla WG, Ferrareze JP, Simioni FJ, Campos ML. Studying the effectiveness of phytoremediation in the purification of soils contaminated with heavy metals. World J Environ Biosci. 2024;13(3):1-7. doi:10.51847/evfEMeqisK
  12. Marriott KA, Birmingham TB. Fundamentals of osteoarthritis. Rehabilitation: Exercise, diet, biomechanics, and physical therapist-delivered interventions. Osteoarthritis Cartilage. 2023;31(10):1312-26.
  13. Luan L, Bousie J, Pranata A, Adams R, Han J. Stationary cycling exercise for knee osteoarthritis: A systematic review and meta-analysis. Clin Rehabil. 2021;35(4):522-33.
  14. Abramoff B, Caldera FE. Osteoarthritis: Pathology, diagnosis, and treatment options. Med Clin N Am. 2020;104(2):293-311.
  15. Vincent TL. Mechanoflammation in osteoarthritis pathogenesis. Semin Arthritis Rheum. 2019;49(3S):S36-8.
  16. Ermawati DE, Saputri IA, Zulpadly MF, Kartikasari MND. Permeation studies of flavonoid total on Moringa leave ethanolic extract patch. J Adv Pharm Educ Res. 2023;13(4):1-7. doi:10.51847/t6FBe7onUl
  17. Na HS, Park JS, Cho KH, Kwon JY, Choi J, Jhun J, et al. Interleukin-1-Interleukin-17 signaling axis induces cartilage destruction and promotes experimental osteoarthritis. Front Immunol. 2020;11:730.
  18. Qu Y, Shen Y, Teng L, Huang Y, Yang Y, Jian X, et al. Chicoric acid attenuates tumor necrosis factor-α-induced inflammation and apoptosis via the Nrf2/HO-1, PI3K/AKT, and NF-κB signaling pathways in C28/I2 cells and ameliorates the progression of osteoarthritis in a rat model. Int Immunopharmacol. 2022;111:109129.
  19. Mehana EE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci. 2019;234:116786.
  20. Ni L, Lin Z, Hu S, Shi Y, Jiang Z, Zhao J, et al. Itaconate attenuates osteoarthritis by inhibiting STING/NF-κB axis in chondrocytes and promoting M2 polarization in macrophages. Biochem Pharmacol. 2022;198:114935.
  21. Sadri B, Hassanzadeh M, Bagherifard A, Mohammadi J, Alikhani M, Moeinabadi-Bidgoli K, et al. Cartilage regeneration and inflammation modulation in knee osteoarthritis following injection of allogeneic adipose-derived mesenchymal stromal cells: A phase II, triple-blinded, placebo controlled, randomized trial. Stem Cell Res Ther. 2023;14(1):162.
  22. Kawata M, McClatchy DB, Diedrich JK, Olmer M, Johnson KA, Yates JR, et al. Mocetinostat activates Krüppel-like factor 4 and protects against tissue destruction and inflammation in osteoarthritis. JCI Insight. 2023;8(17):e170513.
  23. Mekhtieva AT, Martynyuk AS, Ilyasova AJ, Tatonov GK, Pogorova MR, Beremukova MA, et al. A Method for assessing the quality of recombinant human milk peptide analogues. Pharmacophore. 2024;15(4):60-5. doi:10.51847/UOIK0ncy8c
  24. Zhuang H, Ren X, Jiang F, Zhou P. Indole-3-propionic acid alleviates chondrocytes inflammation and osteoarthritis via the AhR/NF-κB axis. Mol Med. 2023;29(1):17.
  25. Xie W, Qi S, Dou L, Wang L, Wang X, Bi R, et al. Achyranthoside D attenuates chondrocyte loss and inflammation in osteoarthritis via targeted regulation of Wnt3a. Phytomedicine. 2023;111:154663
  26. Kuppa SS, Kim HK, Kang JY, Lee SC, Yang HY, Sankaranarayanan J, et al. Polynucleotides suppress inflammation and stimulate matrix synthesis in an in vitro Cell-based osteoarthritis model. Int J Mol Sci. 2023;24(15):12282.
  27. Deng X, Qu Y, Li M, Wu C, Dai J, Wei K, et al. Sakuranetin reduces inflammation and chondrocyte dysfunction in osteoarthritis by inhibiting the PI3K/AKT/NF-κB pathway. Biomed Pharmacother. 2024;171:116194.
  28. Chang B, Hu Z, Chen L, Jin Z, Yang Y. Development and validation of cuproptosis-related genes in synovitis during osteoarthritis progress. Front Immunol. 2023;14:1090596.
  29. Knights AJ, Redding SJ, Maerz T. Inflammation in osteoarthritis: The latest progress and ongoing challenges. Curr Opin Rheumatol. 2023;35(2):128-34.
  30. Tu B, Fang R, Zhu Z, Chen G, Peng C, Ning R. Comprehensive analysis of arachidonic acid metabolism-related genes in diagnosis and synovial immune in osteoarthritis: Based on bulk and single-cell RNA sequencing data. Inflamm Res. 2023;72(5):955-70.
  31. Li J, Wang G, Xv X, Li Z, Shen Y, Zhang C, et al. Identification of immune-associated genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning. Front Immunol. 2023;14:1134412.
  32. Sebastian A, Hum NR, McCool JL, Wilson SP, Murugesh DK, Martin KA, et al. Single-cell RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis. Front Immunol. 2022;13:938075.
  33. Forman HJ, Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689-709.
  34. Zheng Z, Su J, Bao X, Wang H, Bian C, Zhao Q, et al. Mechanisms and applications of radiation-induced oxidative stress in regulating cancer immunotherapy. Front Immunol. 2023;14:1247268.
  35. An Y, Xu BT, Wan SR, Ma XM, Long Y, Xu Y, et al. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc Diabetol. 2023;22(1):237.
  36. Yan Q, Liu S, Sun Y, Chen C, Yang S, Lin M, et al. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J Transl Med. 2023;21(1):519.
  37. Cheng C, Zhang J, Li X, Xue F, Cao L, Meng L, et al. NPRC deletion mitigated atherosclerosis by inhibiting oxidative stress, inflammation, and apoptosis in ApoE knockout mice. Signal Transduct Target Ther. 2023;8(1):290.
  38. Liu L, Zhang W, Liu T, Tan Y, Chen C, Zhao J, et al. The physiological metabolite α-ketoglutarate ameliorates osteoarthritis by regulating mitophagy and oxidative stress. Redox Biol. 2023;62:102663.
  39. Chen Z, Huang Y, Chen Y, Yang X, Zhu J, Xu G, et al. CircFNDC3B regulates osteoarthritis and oxidative stress by targeting miR-525-5p/HO-1 axis. Commun Biol. 2023;6(1):200.
  40. Chen B, He Q, Chen C, Lin Y, Xiao J, Pan Z, et al. Combination of curcumin and catalase protects against chondrocyte injury and knee osteoarthritis progression by suppressing oxidative stress. Biomed Pharmacother. 2023;168:115751.
  41. Aigner T, Hemmel M, Neureiter D, Gebhard PM, Zeiler G, Kirchner T, et al. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: A study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Arthritis Rheum. 2001;44(6):1304-12.
  42. Aigner T, Söder S, Gebhard PM, McAlinden A, Haag J. Mechanisms of disease: Role of chondrocytes in the pathogenesis of osteoarthritis--structure, chaos and senescence. Nat Clin Pract Rheumatol. 2007;3(7):391-9. 
  43. Héraud F, Héraud A, Harmand MF. Apoptosis in normal and osteoarthritic human articular cartilage. Ann Rheum Dis. 2000;59(12):959-65.
  44. Zhang H, Zheng W, Li D, Zheng J. miR-146a-5p promotes chondrocyte apoptosis and inhibits autophagy of osteoarthritis by targeting NUMB. Cartilage. 2021;13(2_suppl):1467S-77. 
  45. Liu Y, Xu S, Zhang H, Qian K, Huang J, Gu X, et al. Stimulation of α7-nAChRs coordinates autophagy and apoptosis signaling in experimental knee osteoarthritis. Cell Death Dis. 2021;12(5):448.
  46. Dilley JE, Seetharam A, Ding X, Bello MA, Shutter J, Burr DB, et al. CAMKK2 is upregulated in primary human osteoarthritis and its inhibition protects against chondrocyte apoptosis. Osteoarthritis Cartilage. 2023;31(7):908-18.
  47. Cayres-Santos SU, Urban JB, Barbosa MF, Lemes IR, Kemper HCG, Fernandes RA. Sports participation improves metabolic profile in adolescents: ABCD growth study. Am J Hum Biol. 2020;32(5):e23387.
  48. Martínez-Aranda LM, Sanz-Matesanz M, Orozco-Durán G, González-Fernández FT, Rodríguez-García L, Guadalupe-Grau A. Effects of different rapid weight loss strategies and percentages on performance-related parameters in combat sports: An updated systematic review. Int J Environ Res Public Health. 2023;20(6):5158.
  49. Liu J, Jia S, Yang Y, Piao L, Wang Z, Jin Z, et al. Exercise induced meteorin-like protects chondrocytes against inflammation and pyroptosis in osteoarthritis by inhibiting PI3K/Akt/NF-κB and NLRP3/caspase-1/GSDMD signaling. Biomed Pharmacother. 2023;158:114118. 
  50. Chen L, Lou Y, Pan Z, Cao X, Zhang L, Zhu C, et al. Treadmill and wheel exercise protect against JNK/NF-κB induced inflammation in experimental models of knee osteoarthritis. Biochem Biophys Res Commun. 2020;523(1):117-22.
  51. Li K, Liu A, Zong W, Dai L, Liu Y, Luo R, et al. Moderate exercise ameliorates osteoarthritis by reducing lipopolysaccharides from gut microbiota in mice. Saudi J Biol Sci. 2021;28(1):40-9. 
  52. Hao X, Zhang J, Shang X, Sun K, Zhou J, Liu J, et al. Exercise modifies the disease-relevant gut microbial shifts in post-traumatic osteoarthritis rats. Bone Joint Res. 2022;11(4):214-25.
  53. Park S, Kang S, Kim DS, Zhang T. Protection against osteoarthritis symptoms by aerobic exercise with a high-protein diet by reducing inflammation in a testosterone-deficient animal model. Life (Basel). 2022;12(2):177. 
  54. da Silva LA, Thirupathi A, Colares MC, Haupenthal DPDS, Venturini LM, Corrêa MEAB, et al. The effectiveness of treadmill and swimming exercise in an animal model of osteoarthritis. Front Physiol. 2023;14:1101159. 
  55. Tian Y, Gou J, Zhang H, Lu J, Jin Z, Jia S, et al. The anti-inflammatory effects of 15-HETE on osteoarthritis during treadmill exercise. Life Sci. 2021;273:119260.
  56. Beckwée D, Nijs J, Bierma-Zeinstra SM, Leemans L, Leysen L, Puts S, et al. Exercise therapy for knee osteoarthritis pain: How does it work? A study protocol for a randomised controlled trial. BMJ Open. 2024;14(1):e074258.
  57. Norimatsu K, Nakanishi K, Ijuin T, Otsuka S, Takada S, Tani A, et al. Effects of low-intensity exercise on spontaneously developed knee osteoarthritis in male senescence-accelerated mouse prone 8. Arthritis Res Ther. 2023;25(1):168.
  58. Li Z, Huang Z, Zhang H, Lu J, Tian Y, Piao S, et al. Moderate-intensity exercise alleviates pyroptosis by promoting autophagy in osteoarthritis via the P2X7/AMPK/mTOR axis. Cell Death Discov. 2021;7(1):346.
  59. Oka Y, Murata K, Ozone K, Minegishi Y, Kano T, Shimada N, et al. Mild treadmill exercise inhibits cartilage degeneration via macrophages in an osteoarthritis mouse model. Osteoarthr Cartil Open. 2023;5(2):100359. 
  60. Marriott K, Chopp-Hurley J, Loukov D, Karampatos S, Kuntz AB, Wiebenga EG, et al. Muscle strength gains after strengthening exercise explained by reductions in serum inflammation in women with knee osteoarthritis. Clin Biomech (Bristol, Avon). 2021;86:105381. 
  61. Zhang H, Ji L, Yang Y, Wei Y, Zhang X, Gang Y, et al. The therapeutic effects of treadmill exercise on osteoarthritis in rats by inhibiting the HDAC3/NF-KappaB pathway in vivo and in vitro. Front Physiol. 2019;10:1060.
  62. Liu X, Chen R, Song Z, Sun Z. Exercise following joint distraction inhibits muscle wasting and delays the progression of post-traumatic osteoarthritis in rabbits by activating PGC-1α in skeletal muscle. J Orthop Surg Res. 2024;19(1):325. 
  63. Zhou X, Cao H, Wang M, Zou J, Wu W. Moderate-intensity treadmill running relieves motion-induced post-traumatic osteoarthritis mice by up-regulating the expression of lncRNA H19. Biomed Eng Online. 2021;20(1):111. 
  64. Klinedinst NJ, Huang W, Nelson AK, Resnick B, Renn C, Kane MA, et al. Inflammatory and immune protein pathways possible mechanisms for pain following walking in knee osteoarthritis. Nurs Res. 2022;71(4):328-35.
  65. Liu W, Wang C, Yu G, Shi B, Wang J. Analysis of the application effect of exercise rehabilitation therapy based on data mining in the prevention and treatment of knee osteoarthritis. Comput Math Methods Med. 2022;2022:2109528.
  66. Tossige-Gomes R, Avelar NC, Simão AP, Neves CD, Brito-Melo GE, Coimbra CC, et al. Whole-body vibration decreases the proliferativeb response of TCD4(+) cells in elderly individuals with knee osteoarthritis. Braz J Med Biol Res. 2012;45(12):1262-8.
  67. Germanou EI, Chatzinikolaou A, Malliou P, Beneka A, Jamurtas AZ, Bikos C, et al. Oxidative stress and inflammatory responses following an acute bout of isokinetic exercise in obese women with knee osteoarthritis. Knee. 2013;20(6):581-90.
  68. Skrzep-Poloczek B, Poloczek J, Chełmecka E, Kazura W, Dulska A, Idzik M, et al. General, 21-day postoperative rehabilitation program has beneficial effect on oxidative stress markers in patients after total hip or knee replacement. Oxid Med Cell Longev. 2020;2020:4598437.
  69. Baur A, Henkel J, Bloch W, Treiber N, Scharffetter-Kochanek K, Brüggemann GP, et al. Effect of exercise on bone and articular cartilage in heterozygous manganese superoxide dismutase (SOD2) deficient mice. Free Radic Res. 2011;45(5):550-8.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.