Archive \ Volume.15 2024 Issue 3

Cardiovascular Risk and Systemic Inflammation in Rheumatoid Arthritis: Comparative Insights with Psoriatic Arthritis

,
  1. SSG of Clinical Pharmacology, Jagiellonian University Medical College, Cracow, Poland.

Abstract

Cardiovascular disease (CVD) is a leading cause of morbidity and mortality in patients with rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Both conditions are characterized by systemic inflammation that contributes to an increased risk of CVD, yet the underlying mechanisms and associated risk factors differ. This review investigates the immunological responses, inflammatory pathways, and genetic predispositions that influence the risk of cardiovascular disease (CV) in people with RA and PsA. Endothelial dysfunction and atherosclerosis in RA are primarily caused by pro-inflammatory cytokines, specifically interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α), as well as the existence of autoantibodies such as anti-citrullinated protein antibodies (ACPA). Additionally, RA displays a "lipid paradox," in which a decreased risk of CVD is paradoxically correlated with a higher risk of cholesterol, most likely as a result of ongoing systemic inflammation. Different paths of CV impact are indicated by unique lipid profile changes and less prominent autoantibody participation in PsA, despite the fact that the risk of CVD is also enhanced. Genetic factors like HLA-DRB1 are more prominent in RA, while PsA has a unique association with metabolic syndrome and obesity-related inflammation. Despite the well-established CV risk in both RA and PsA, current risk calculators do not include PsA, and only two models account for RA. This review highlights the need for better risk assessment tools that incorporate disease-specific factors. Recognizing the overlapping and divergent mechanisms in RA and PsA can enhance the development of more targeted strategies for managing CV health and guide personalized treatment approaches.


Downloads: 114
Views: 415

How to cite:
Vancouver
Kęska M, Suchy W. Cardiovascular Risk and Systemic Inflammation in Rheumatoid Arthritis: Comparative Insights with Psoriatic Arthritis. Arch Pharm Pract. 2024;15(3):58-65. https://doi.org/10.51847/EjiHWNs210
APA
Kęska, M., & Suchy, W. (2024). Cardiovascular Risk and Systemic Inflammation in Rheumatoid Arthritis: Comparative Insights with Psoriatic Arthritis. Archives of Pharmacy Practice, 15(3), 58-65. https://doi.org/10.51847/EjiHWNs210

Download Citation
References
  1. Lin YJ, Anzaghe M, Schülke S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells. 2020;9(4):880.
  2. Jahid M, Khan KU, Rehan-Ul-Haq, Ahmed RS. Overview of rheumatoid arthritis and scientific understanding of the disease. Mediterr J Rheumatol. 2023;34(3):284-91.
  3. Scott IC, Whittle R, Bailey J, Twohig H, Hider SL, Mallen CD, et al. Rheumatoid arthritis, psoriatic arthritis, and axial spondyloarthritis epidemiology in England from 2004 to 2020: An observational study using primary care electronic health record data. Lancet Reg Health Eur. 2022;23:100519.
  4. Sparks JA. Rheumatoid arthritis. Ann Intern Med. 2019;170(1):ITC1-16.
  5. Chirila RM, Berianu F, Abril A, Butendieck RR. Extra-articular involvement of rheumatoid arthritis in three seropositive patients in the absence of initial joint involvement. Immun Inflamm Dis. 2021;9(4):1613-7.
  6. Scherer HU, Häupl T, Burmester GR. The etiology of rheumatoid arthritis. J Autoimmun. 2020;110:102400.
  7. Jevtic V, Lingg G. Differential diagnosis of rheumatoid and psoriatic arthritis at an early stage in the small hand and foot joints using magnetic resonance imaging. Handchir Mikrochir Plast Chir. 2012;44(3):163-70.
  8. Saalfeld W, Mixon AM, Zelie J, Lydon EJ. Differentiating psoriatic arthritis from osteoarthritis and rheumatoid arthritis: A narrative review and guide for advanced practice providers. Rheumatol Ther. 2021;8(4):1493-517.
  9. Merola JF, Espinoza LR, Fleischmann R. Distinguishing rheumatoid arthritis from psoriatic arthritis. RMD Open. 2018;4(2):1-13.
  10. Roudier J, Balandraud N, Auger I. How RA associated HLA-DR molecules contribute to the development of antibodies to citrullinated proteins: The hapten carrier model. Front Immunol. 2022;13:930112.
  11. Jung SM, Park YJ, Park KS, Kim KJ. Clinical implications of shared epitope and anti-citrullinated peptide antibody in patients with rheumatoid arthritis. J Rheum Dis. 2022;29(3):171-80.
  12. Johri N, Varshney S, Gandha S, Maurya A, Mittal P, Jangra S, et al. Association of cardiovascular risks in rheumatoid arthritis patients: Management, treatment and future perspectives. Health Sci Rev. 2023;8:100108.
  13. Avina-Zubieta JA, Thomas J, Sadatsafavi M, Lehman AJ, Lacaille D. Risk of incident cardiovascular events in patients with rheumatoid arthritis: A meta-analysis of observational studies. Ann Rheum Dis. 2012;71(9):1524-9.
  14. Dijkshoorn B, Raadsen R, Nurmohamed MT. Cardiovascular disease risk in rheumatoid arthritis anno 2022. J Clin Med. 2022;11(10):2704.
  15. Westerlind H, Id O, Id O, Holmdahl R, Id O, Length F. Anti-citrullinated protein antibody specificities, rheumatoid factor isotypes and incident cardiovascular events in patients with rheumatoid arthritis. Arthritis Rheumatol. 2020;72(10):1658-67.
  16. van Boheemen L, van Beers-Tas MH, Kroese JM, van de Stadt LA, van Schaardenburg D, Nurmohamed MT. Cardiovascular risk in persons at risk of developing rheumatoid arthritis. PLoS One. 2020;15(8):e0237072.
  17. Sokolove J, Brennan MJ, Sharpe O, Lahey LJ, Kao AH, Krishnan E, et al. Citrullination within the atherosclerotic plaque: A potential target for the anti-citrullinated protein antibody response in rheumatoid arthritis. Arthritis Rheum. 2013;65(7):1719-24.
  18. Kang S, Han K, Jung JH, Eun Y, Kim IY, Hwang J, et al. Associations between cardiovascular outcomes and rheumatoid arthritis: A nationwide population-based cohort study. J Clin Med. 2022;11(22):6812. 
  19. Finckh A, Gilbert B, Hodkinson B, Bae SC, Thomas R, Deane KD, et al. Global epidemiology of rheumatoid arthritis. Nat Rev Rheumatol. 2022;18(10):591-602.
  20. Ali A, Ali A, Kumar D, Kumar R, Elahi K, Suman F, et al. Comparison of incidence of myocardial infarction in patients with rheumatoid arthritis and diabetes mellitus. Cureus. 2021;13(6):e15716.
  21. Argnani L, Zanetti A, Carrara G, Silvagni E, Guerrini G, Zambon A, et al. Rheumatoid arthritis and cardiovascular risk: Retrospective matched-cohort analysis based on the RECORD study of the Italian society for rheumatology. Front Med. 2021;8:745601.
  22. Rawla P. Cardiac and vascular complications in rheumatoid arthritis. Reumatologia. 2019;57(1):27-36.
  23. Pandolfi F, Franza L, Carusi V, Altamura S, Andriollo G, Nucera E. Interleukin-6 in rheumatoid arthritis. Int J Mol Sci. 2020;21(15):5238. 
  24. Blum A, Adawi M. Rheumatoid arthritis (RA) and cardiovascular disease. Autoimmun Rev. 2019;18(7):679-90.
  25. Carbone F, Bonaventura A, Liberale L, Paolino S, Torre F, Dallegri F, et al. Atherosclerosis in Rheumatoid Arthritis: Promoters and Opponents. Clin Rev Allergy Immunol. 2020;58(1):1-14.
  26. Zhang H, Park Y, Wu J, Chen XP, Lee S, Yang J, et al. Role of TNF-α in vascular dysfunction. Clin Sci (Lond). 2009;116(3):219-30.
  27. Lee YH, Bae SC. Circulating leptin level in rheumatoid arthritis and its correlation with disease activity: A meta-analysis. Z Rheumatol. 2016;75(10):1021-7.
  28. Poetsch MS, Strano A, Guan K. Role of leptin in cardiovascular diseases. Front Endocrinol. 2020;11:354.
  29. Kang KW, Ok M, Lee SK. Leptin as a Key between obesity and cardiovascular disease. J Obes Metab Syndr. 2020;29(4):248-59.
  30. Wang C, Chang L, Wang J, Xia L, Cao L, Wang W, et al. Leptin and risk factors for atherosclerosis: A review. Medicine (Baltimore). 2023;102(46):e36076.
  31. Lee YH, Song GG. Circulating leptin and its correlation with rheumatoid arthritis activity: A meta-analysis. J Rheum Dis. 2023;30(2):116-25.
  32. Lugrin J, Parapanov R, Milano G, Cavin S, Debonneville A, Krueger T, et al. The systemic deletion of interleukin-1α reduces myocardial inflammation and attenuates ventricular remodeling in murine myocardial infarction. Sci Rep. 2023;13(1):4006.
  33. Berezin AE, Berezin AA. Adverse cardiac remodelling after acute myocardial infarction: Old and new biomarkers. Dis Markers. 2020;2020:1215802.
  34. Ikonomidis I, Tzortzis S, Andreadou I, Paraskevaidis I, Katseli C, Katsimbri P, et al. Increased beneft of interleukin-1 inhibition on vascular function, myocardial deformation, and twisting in patients with coronary artery disease and coexisting rheumatoid arthritis. Circ Cardiovasc Imaging. 2014;7(4):619-28.
  35. Verma I, Syngle A, Krishan P. Predictors of endothelial dysfunction and atherosclerosis in rheumatoid arthritis in Indian population. Indian Heart J. 2017;69(2):200-6.
  36. Herbrig K, Haensel S, Oelschlaegel U, Pistrosch F, Foerster S, Passauer J. Endothelial dysfunction in patients with rheumatoid arthritis is associated with a reduced number and impaired function of endothelial progenitor cells. Ann Rheum Dis. 2006;65(2):157-63.
  37. Rodríguez-Carrio J, de Paz B, López P, Prado C, Alperi-López M, Javier Ballina-García F, et al. IFNα serum levels are associated with endothelial progenitor cells imbalance and disease features in rheumatoid arthritis patients. PLoS One. 2014;9(1):e86069.
  38. Jones Buie JN, Oates JC. Role of interferon alpha in endothelial dysfunction: Insights into endothelial nitric oxide synthase-related mechanisms. Am J Med Sci. 2014;348(2):168-75.
  39. Cacopardo B, Benanti F, Pinzone MR, Nunnari G. Rheumatoid arthritis following PEG-interferon-alfa-2a plus ribavirin treatment for chronic hepatitis C: A case report and review of the literature. BMC Res Notes. 2013:6:437.
  40. Oliveira TL, Caetano AZ, Belem JM, Klemz BC, Pinheiro MM. Interferon-a induced psoriatic arthritis and autoimmune hemolytic anemia during chronic hepatitis C treatment. Acta Reumatol Port. 2014;39(4):327-30.
  41. Yasmine M, Ajlani H, Boussaud S, Jammali S, Sehli H, Choeur E, et al. THU0606 Rheumatoid arthritis induced by alpha-interferon therapy: A rare case presentation. Ann Rheum Dis. 2020;79:544-45.
  42. Tanaka Y, Kusuda M, Yamaguchi Y. Interferons and systemic lupus erythematosus: Pathogenesis, clinical features, and treatments in interferon-driven disease. Mod Rheumatol. 2023;33(5):857-67.
  43. Lo Gullo A, Mandraffino G, Bagnato G, Aragona CO, Imbalzano E, D’Ascola A, et al. Vitamin D status in rheumatoid arthritis: Inflammation, arterial stiffness and circulating progenitor cell number. PLoS One. 2015;10(8):e0134602.
  44. Park YJ, Kim JY, Park J, Choi JJ, Kim WU, Cho CS. Bone erosion is associated with reduction of circulating endothelial progenitor cells and endothelial dysfunction in rheumatoid arthritis. Arthritis Rheumatol. 2014;66(6):1450-60.
  45. Surdacki A, Martens-Lobenhoffer J, Wloch A, Marewicz E, Rakowski T, Wieczorek-Surdacka E, et al. Elevated plasma asymmetric dimethyl-L-arginine levels are linked to endothelial progenitor cell depletion and carotid atherosclerosis in rheumatoid arthritis. Arthritis Rheum. 2007;56(3):809-19.
  46. Komici K, Perna A, Rocca A, Bencivenga L, Rengo G, Guerra G. Endothelial progenitor cells and rheumatoid arthritis: Response to endothelial dysfunction and clinical evidences. Int J Mol Sci. 2021;22(24):13675.
  47. Rodríguez-Carrio J, Prado C, de paz B, López P, Gómez J, Alperi-López M, et al. Circulating endothelial cells and their progenitors in systemic lupus erythematosus and early rheumatoid arthritis patients. Rheumatology (Oxford). 2012;51(10):1775-84.
  48. Egan CG, Caporali F, Garcia-Gonzalez E, Galeazzi M, Sorrentino V. Endothelial progenitor cells and colony-forming units in rheumatoid arthritis: Association with clinical characteristics. Rheumatology. 2008;47(10):1484-8.
  49. Grisar J, Aletaha D, Steiner CW, Kapral T, Steiner S, Seidinger D, et al. Depletion of endothelial progenitor cells in the peripheral blood of patients with rheumatoid arthritis. Circulation. 2005;111(2):204-11.
  50. Rüger B, Giurea A, Wanivenhaus AH, Zehetgruber H, Hollemann D, Yanagida G, et al. Endothelial precursor cells in the synovial tissue of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum. 2004;50(7):2157-66.
  51. Grisar JC, Haddad F, Gomari FA, Wu JC. Endothelial progenitor cells in cardiovascular disease and chronic inflammation: From biomarker to therapeutic agent. Biomark Med. 2011;5(6):731-44.
  52. Rodríguez-Carrio J, Alperi-López M, López P, Alonso-Castro S, Ballina-García FJ, Suárez A. Angiogenic T cells are decreased in rheumatoid arthritis patients. Ann Rheum Dis. 2015;74(5):921-7.
  53. Shaito A, Aramouni K, Assaf R, Parenti A, Orekhov A, Yazbi A el, et al. Oxidative stress-induced endothelial dysfunction in cardiovascular diseases. Front Biosci (Landmark Ed). 2022;27(3):105.
  54. Mateen S, Moin S, Khan AQ, Zafar A, Fatima N. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS One. 2016;1(4):e0152925.
  55. Farragher TM, Goodson NJ, Naseem H, Silman AJ, Thomson W, Symmons D, et al. Association of the HLA-DRB1 gene with premature death, particularly from cardiovascular disease, in patients with rheumatoid arthritis and inflammatory polyarthritis. Arthritis Rheum. 2008;58(2):359-69.
  56. Gonzalez-Gay MA, Gonzalez-Juanatey C, Lopez-Diaz MJ, Garcia-Porrua C, Miranda-Filloy JA, Ollier WER, et al. HLA – DRB1 and persistent chronic inflammation contribute to cardiovascular events and cardiovascular mortality in patients with rheumatoid arthritis. Arthritis Rheum. 2007;57(1):125-32.
  57. Sharma S, Plant D, Bowes J, Macgregor A, Verstappen S, Barton A, et al. HLA-DRB1 haplotypes predict cardiovascular mortality in inflammatory polyarthritis independent of CRP and anti-CCP status. Arthritis Res Ther. 2022;24(1):90.
  58. Feld J, Chandran V, Haroon N, Inman R, Gladman D. Axial disease in psoriatic arthritis and ankylosing spondylitis: A critical comparison. Nat Rev Rheumatol. 2018;14(6):363-71.
  59. Braun J, Sieper J. Fifty years after the discovery of the association of HLA B27 with ankylosing spondylitis. RMD Open. 2023;9(3):e003102.
  60. Bergfeldt L, Möller E. Complete heart block — another HLA B27 associated disease manifestation. Tissue Antigens. 1983;21(5):385-90.
  61. Forsblad-D’Elia H, Wallberg H, Klingberg E, Carlsten H, Bergfeldt L. Cardiac conduction system abnormalities in ankylosing spondylitis: A cross-sectional study. BMC Musculoskelet Disord. 2013;14:237.
  62. Baniaamam M, Heslinga SC, Konings TC, Handoko ML, Kamp O, van Halm VP, et al. Aortic root diameter is associated with HLA-B27: Identifying the patient with ankylosing spondylitis at risk for aortic valve regurgitation. Rheumatol Int. 2022;42(4):683-8.
  63. Yan J, Yang S, Han L, Ba X, Shen P, Lin W, et al. Dyslipidemia in rheumatoid arthritis: The possible mechanisms. Front Immunol. 2023;14:1254753.
  64. Charles-Schoeman C, Wang J, Shahbazian A, Wilhalme H, Brook J, Kaeley GS, et al. Power doppler ultrasound signal predicts abnormal HDL function in patients with rheumatoid arthritis. Rheumatol Int. 2023;43(6):1041-53.
  65. Rodriguez-Carrio J, Lopez-Mejiıas R, Alperi-Lopez M, Lopez P, Ballina-Garcia FJ, Gonzalez-Gay MA, et al. Paraoxonase 1 activity is modulated by the rs662 Polymorphism and IgG anti-high-density lipoprotein antibodies in patients with rheumatoid arthritis potential implications for cardiovascular disease. Arthritis Rheumatol. 2016;68(6):1367-76.
  66. Jakubowski H. Proteomic exploration of paraoxonase 1 function in health and disease. Int J Mol Sci. 2023;24(9):7764.
  67. Kim JY, Lee EY, Park JK, Song YW, Kim JR, Cho KH. Patients with rheumatoid arthritis show altered lipoprotein profiles with dysfunctional high-density lipoproteins that can exacerbate inflammatory and atherogenic process. PLoS One. 2016;11(10):1-17.
  68. Voloshyna I, Modayil S, Littlefield MJ, Belilos E, Belostocki K, Bonetti L, et al. Plasma from rheumatoid arthritis patients promotes pro-atherogenic cholesterol transport gene expression in THP-1 human macrophages. Exp Biol Med. 2013;238(10):1192-7.
  69. Paiva-Lopes MJ, Batuca JR, Gouveia S, Alves M, Papoila AL, Alves JD. Antibodies towards high-density lipoprotein components in patients with psoriasis. Arch Dermatol Res. 2020;312(2):93-102.
  70. Paiva-Lopes MJ, Delgado Alves J. Psoriasis-associated vascular disease: The role of HDL. J Biomed Sci. 2017;24(1):1-6.
  71. Pietrzak A, Chabros P, Grywalska E, Kiciński P, Franciszkiewicz-Pietrzak K, Krasowska D, et al. Serum lipid metabolism in psoriasis and psoriatic arthritis – An update. Arch Med Sci. 2019;15(2):369-75.
  72. Profumo E, di Franco M, Buttari B, Masella R, Filesi C, Tosti ME, et al. Biomarkers of subclinical atherosclerosis in patients with autoimmune disorders. Mediators Inflamm. 2012;2012:503942.
  73. Liu J, Gao J, Wu Z, Mi L, Li N, Wang Y, et al. Anti-citrullinated protein antibody generation, pathogenesis, clinical application, and prospects. Front Med. 2022;8:802934.
  74. Geraldino-Pardilla L, Giles JT, Sokolove J, Zartoshti A, Robinson WH, Budoff M, et al. Association of anti–citrullinated peptide antibodies with coronary artery calcification in rheumatoid arthritis. Arthritis Care Res. 2017;69(8):1276-81.
  75. Geraldino-Pardilla L, Russo C, Sokolove J, Robinson WH, Zartoshti A, van Eyk J, et al. Association of anti-citrullinated protein or peptide antibodies with left ventricular structure and function in rheumatoid arthritis. Rheumatology. 2017;56(4):534-40.
  76. Xu M, Du R, Xing W, Chen X, Wan J, Wang S, et al. Platelets derived citrullinated proteins and microparticles are potential autoantibodies ACPA targets in RA patients. Front Immunol. 2023;14:1084283.
  77. Spinelli FR, Pecani A, Ciciarello F, Colasanti T, di Franco M, Miranda F, et al. Association between antibodies to carbamylated proteins and subclinical atherosclerosis in rheumatoid arthritis patients. BMC Musculoskelet Disord. 2017;18(1):1-9.
  78. Koussiouris J, Chandran V. Autoantibodies in psoriatic disease. J Appl Lab Med. 2022;7(1):281-93.
  79. Emmungil H, İlgen U, Direskeneli RH. Autoimmunity in psoriatic arthritis: Pathophysiological and clinical aspects. Turk J Med Sci. 2021;51(4):1601-14.
  80. Chimenti MS, Triggianese P, Nuccetelli M, Terracciano C, Crisanti A, Guarino MD, et al. Auto-reactions, autoimmunity and psoriatic arthritis. Autoimmun Rev. 2015;14(12):1142-6.
  81. Fuentes-Duculan J, Bonifacio KM, Kunjravia N, Jason E, Cueto I, Li X, et al. Autoantigens ADAMTSL5 and LL-37 are significantly upreglated in active psoriasis and associated with dendritic cells and macrophages. Exp Dermatol. 2019;26(11):1075-82.
  82. Frasca L, Palazzo R, Chimenti MS, Alivernini S, Tolusso B, Bui L, et al. Anti-LL37 antibodies are present in psoriatic arthritis (PsA) patients: New biomarkers in PsA. Front Immunol. 2018;9(1936):1-16.
  83. Zhu J, Shi XF, Chu CQ. Autoantibodies in psoriatic arthritis: Are they of pathogenic relevance? Chin Med J (Engl). 2020;133(24):2899-901.
  84. Yuan Y, Qiu J, Lin ZT, Li W, Haley C, Mui UN, et al. Identification of novel autoantibodies associated with psoriatic arthritis. Arthritis Rheumatol. 2019;71(6):941-51.
  85. Baker JF, Billig E, Michaud K, Ibrahim S, Caplan L, Cannon GW, et al. Weight loss, the obesity paradox, and the risk of death in rheumatoid arthritis. Arthritis Rheumatol. 2015;67(7):1711-7.
  86. Wolfe F, Michaud K. Effect of body mass index on mortality and clinical status in rheumatoid arthritis. Arthritis Care Res (Hoboken). 2012;64(10):1471-9.
  87. England BR, Baker JF, Sayles H, Michaud K, Caplan L, Davis LA, et al. Body mass index, weight loss, and cause-specific mortality in rheumatoid arthritis. Arthritis Care Res. 2018;70(1):11-8.
  88. Malla J, Zahra A, Venugopal S, Selvamani TY, Shoukrie SI, Selvaraj R, et al. What role do inflammatory cytokines play in cancer cachexia? Cureus. 2022;14(7):e26798.
  89. Lemmey AB. Rheumatoid cachexia: The undiagnosed, untreated key to restoring physical function in rheumatoid arthritis patients? Rheumatology. 2016;55(7):1149-50.
  90. Efthymiou E, Grammatikopoulou MG, Gkiouras K, Efthymiou G, Zafiriou E, Goulis DG, et al. Time to deal with rheumatoid cachexia: Prevalence, diagnostic criteria, treatment effects and evidence for management. Mediterr J Rheumatol. 2022;33(3):271-90.
  91. Kumthekar A, Ogdie A. Obesity and psoriatic arthritis: A narrative review. Rheumatol Ther. 2020;7(3):447-56.
  92. Klingberg E, Bilberg A, Björkman S, Hedberg M, Jacobsson L, Forsblad-D’Elia H, et al. Weight loss improves disease activity in patients with psoriatic arthritis and obesity: An interventional study. Arthritis Res Ther. 2019;21(1):17.
  93. Klingberg E, Björkman S, Eliasson B, Larsson I, Bilberg A. Weight loss is associated with sustained improvement of disease activity and cardiovascular risk factors in patients with psoriatic arthritis and obesity: A prospective intervention study with two years of follow-up. Arthritis Res Ther. 2020;22(1):254.
  94. di Minno MND, Peluso R, Iervolino S, Russolillo A, Lupoli R, Scarpa R. Weight loss and achievement of minimal disease activity in patients with psoriatic arthritis starting treatment with tumour necrosis factor α blockers. Ann Rheum Dis. 2014;73(6):1157-62.
  95. Coates LC, Merola JF, Grieb SM, Mease PJ, Duffin KC. Methotrexate in psoriasis and psoriatic arthritis. J Rheumatol. 2020;96:31-5.
  96. Ogdie A, Coates LC, Gladman DD. Treatment guidelines in psoriatic arthritis. Rheumatology. 2021;59(Suppl 1):I37-46.
  97. Assign-Score.com [Internet]. Edinburgh: Scottish Intercollegiate Guidelines Network; 2014 [updated March 2014; cited 2024 Sep 8]. Available from: https://www.assign-score.com/estimate-the-risk/.
  98. Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ. 2017;357:j2099.
  99. Ogata A, Kumanogoh A, Tanaka T. Pathological role of interleukin-6 in psoriatic arthritis. Arthritis. 2012;2012(1):713618.

 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.