Archive \ Volume.15 2024 Issue 3

The Influence of Physical Factors of the Production Environment on Protein Metabolism in the Body

, , , , , , ,
  1. Department of Therapy, Medical Institute, Chechen State University named after A.A. Kadyrov, Grozny, Russia.

  2. Department of Therapy, Medical Institute, Tula State University, Tula, Russia.


Abstract

The negative effect of vibration, as the main physical production factor, should be thoroughly investigated. In this scientific work, the effect of general vibration on protein metabolism in the body is studied using the example of laboratory animals. 2 series of experiments were conducted on 30 white rats kept in the same conditions. At the same time, animals of group 1 were exposed to vibration, unlike animals of group 2. Animals of group 1 were exposed to a general vertical sinusoidal vibration with a frequency of 20 Hz with a vibration velocity of 126 dB for 4 hours daily for 8 weeks. The results of the studies did not reveal significant changes in the total protein content. However, there was a significant decrease in albumin in the content of protein fractions, as well as an increase in the fractions of α- and γ-globulins. It was found that by the end of the experiment, there was a decrease in the content of total amino acids in the blood serum of experimental animals: aspartic acid (P<0.05), proline (P<0.05), glycine (P<0.01), valine (P<0.05), methionine (P<0.05) and phenylalanine (P<0.001). It should be noted that, in general, there is a decrease in the number of hydrophobic (nonpolar) amino acids (valine, proline, phenylalanine, and methionine) and slightly polar uncharged, as well as negatively charged (aspartic acid).


Downloads: 166
Views: 805

How to cite:
Vancouver
Umarova MS, Akhyadova ZS, Salamanova TO, Dzhamaldinova ZI, Taysumova ZD, Bekmurzaeva MR, et al. The Influence of Physical Factors of the Production Environment on Protein Metabolism in the Body. Arch Pharm Pract. 2024;15(3):23-7. https://doi.org/10.51847/irgtxJcQcC
APA
Umarova, M. S., Akhyadova, Z. S., Salamanova, T. O., Dzhamaldinova, Z. I., Taysumova, Z. D., Bekmurzaeva, M. R., Tapaeva, M. M., & Ivanushkina, A. M. (2024). The Influence of Physical Factors of the Production Environment on Protein Metabolism in the Body. Archives of Pharmacy Practice, 15(3), 23-27. https://doi.org/10.51847/irgtxJcQcC

Download Citation
References
  1. Tur JA, Bibiloni MDM. Anthropometry, body composition and resting energy expenditure in human. Nutrients. 2019;11(8):1891. doi:10.3390/nu11081891
  2. Karpińska E, Moskwa J, Puścion-Jakubik A, Naliwajko SK, Soroczyńska J, Markiewicz-Żukowska R, et al. Body composition of young women and the consumption of selected nutrients. Nutrients. 2022;15(1):129. doi:10.3390/nu15010129
  3. Yang B, Tang C, Shi Z, Gao L. Association of macronutrients intake with body composition and sarcopenic obesity in children and adolescents: A population-based analysis of the national health and nutrition examination survey (NHANES) 2011-2018. Nutrients. 2023;15(10):2307. doi:10.3390/nu15102307
  4. Fischer NH, Oliveira MT, Diness F. Chemical modification of proteins - challenges and trends at the start of the 2020s. Biomater Sci. 2023 ;11(3):719-48. doi:10.1039/d2bm01237e
  5. Gurevich VV. Protein multi-functionality: Introduction. Cell Mol Life Sci. 2019;76(22):4405-6. doi:10.1007/s00018-019-03271-6
  6. Siegrist J. Psychosocial stress at work and disease risks: Scientific evidence and implications for practice. Internist (Berl). 2021;62(9):893-8. [In German]. doi:10.1007/s00108-021-01105-x
  7. Dutta S, Gorain B, Choudhury H, Roychoudhury S, Sengupta P. Environmental and occupational exposure of metals and female reproductive health. Environ Sci Pollut Res Int. 2022;29(41):62067-92. doi:10.1007/s11356-021-16581-9
  8. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: A systematic analysis for the global burden of disease study 2019. Lancet. 2020;396(10258):1223-49. doi:10.1016/S0140-6736(20)30752-2
  9. Wang Z, Jiang Y, Shao X, Liu C. On-site measurement and environmental impact of vibration caused by construction of double-shield TBM tunnel in urban subway. Sci Rep. 2023;13(1):17689. doi:10.1038/s41598-023-45089-0
  10. Beben D, Maleska T, Bobra P, Duda J, Anigacz W. Influence of traffic-induced vibrations on humans and residential building-A case study. Int J Environ Res Public Health. 2022;19(9):5441. doi:10.3390/ijerph19095441
  11. Park I, Kim S, Kim Y, Yun B, Yoon JH. Association between physical risk factors and sleep disturbance among workers in Korea: The 5th Korean working conditions survey. Sleep Med. 2022;100:157-64. doi:10.1016/j.sleep.2022.08.011
  12. Debenedictis TA, Billing D, Milanese S, Furnell A, Tomkinson G, Thewlis D. The impact of the mechanical whole-body vibration experienced during military land transit on the physical attributes underpinning dismounted combatant physical performance: A randomized controlled trial. J Sci Med Sport. 2021;24(4):380-5. doi:10.1016/j.jsams.2020.09.020
  13. Thaper R, Sesek R, Garnett R, Acosta-Sojo Y, Purdy GT. The combined impact of hand-arm vibration and noise exposure on hearing sensitivity of agricultural/forestry workers-A systematic literature review. Int J Environ Res Public Health. 2023;20(5):4276. doi:10.3390/ijerph20054276
  14. Grossmann T, Steffan B, Kirsch A, Grill M, Gerstenberger C, Gugatschka M. Exploring the pathophysiology of Reinke's Edema: The cellular impact of cigarette smoke and vibration. Laryngoscope. 2021;131(2):E547-54. doi:10.1002/lary.28855
  15. Bhuiyan MHU, Fard M, Robinson SR. Effects of whole-body vibration on driver drowsiness: A review. J Safety Res. 2022;81:175-89. doi:10.1016/j.jsr.2022.02.009
  16. Viellehner J, Potthast W. The effect of cycling-specific vibration on neuromuscular performance. Med Sci Sports Exerc. 2021;53(5):936-44. doi:10.1249/MSS.0000000000002565
  17. Kia K, Fitch SM, Newsom SA, Kim JH. Effect of whole-body vibration exposures on physiological stresses: Mining heavy equipment applications. Appl Ergon. 2020;85:103065. doi:10.1016/j.apergo.2020.103065
  18. Bartel L, Mosabbir A. Possible mechanisms for the effects of sound vibration on human health. Healthcare (Basel). 2021;9(5):597. doi:10.3390/healthcare9050597
  19. Lawrence-Sidebottom D, Schmidt MA, Harvey DO, Van Dongen HPA, Davis CJ. Floor vibrations for motivation and feedback in the rat vibration actuating search task. PLoS One. 2021;16(9):e0257980. doi:10.1371/journal.pone.0257980
  20. Minematsu A, Nishii Y. Effects of whole body vibration on bone properties in growing rats. Int Biomech. 2022;9(1):19-26. doi:10.1080/23335432.2022.2142666
  21. Koh ES, Lim JY. Impacts of whole-body vibration on denervated skeletal-muscle atrophy in rats. J Orthop Res. 2023;41(12):2579-87. doi:10.1002/jor.25589
  22. Krajnak K, Waugh S, Welcome D, Xu XS, Warren C, McKinney W, et al. Effects of whole-body vibration on reproductive physiology in a rat model of whole-body vibration. J Toxicol Environ Health A. 2022;85(23):953-71. doi:10.1080/15287394.2022.2128954
  23. Chen D, Kim S, Lee S, Lee JM, Choi YJ, Shin SJ, et al. The effect of mechanical vibration on osteogenesis of periodontal ligament stem cells. J Endod. 2021;47(11):1767-74. doi:10.1016/j.joen.2021.08.014
  24. ISO 9612-2016 Acoustics. Noise measurement for the purpose of evaluating human exposure to noise. Method of measurements at workplaces. Available from: https://docs.cntd.ru/document/1200140579 (Accessed on 15 Jun 2024)
  25. Verevkina M, Goncharov V, Nesmeyanov E, Kamalova O, Baklanov I, Pokhilko A, et al. Application of the Se NPs-Chitosan molecular complex for the correction of selenium deficiency in rats model. Potr S J Food Sci. 2023;17(1):455-66. doi:10.5219/1871
  26. Belyaev NG, Rzhepakovsky IV, Timchenko LD, Areshidze DA, Simonov AN, Nagdalian AA, et al. Effect of training on femur mineral density of rats. Biochem Cell Arch. 2019;19(2):3549-52.
  27. Wu P, Lin S, Cao G, Wu J, Jin H, Wang C, et al. Absorption, distribution, metabolism, excretion and toxicity of microplastics in the human body and health implications. J Hazard Mater. 2022;437:129361. doi:10.1016/j.jhazmat.2022.129361
  28. Bigman LS, Levy Y. Proteins: Molecules defined by their trade-offs. Curr Opin Struct Biol. 2020;60:50-6. doi:10.1016/j.sbi.2019.11.005
  29. Mesquita FS, Abrami L, Linder ME, Bamji SX, Dickinson BC, van der Goot FG. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol. 2024;25(6):488-509. doi:10.1038/s41580-024-00700-8
  30. Xue C, Li G, Zheng Q, Gu X, Shi Q, Su Y, et al. Tryptophan metabolism in health and disease. Cell Metab. 2023;35(8):1304-26. doi:10.1016/j.cmet.2023.06.004
  31. Comai S, Bertazzo A, Brughera M, Crotti S. Tryptophan in health and disease. Adv Clin Chem. 2020;95:165-218. doi:10.1016/bs.acc.2019.08.005
  32. Pirami H, Khavanin A, Nadri F, Tajpoor A, Mehrifar Y, Tirani ZM. The combined effects of noise and vibration stress on sex hormone levels, fertility capacity, and the protective role of cinnamon extract in rats: An experimental study. Arch Environ Occup Health. 2022;77(9):764-73. doi:10.1080/19338244.2021.2011085
  33. Minematsu A, Nishii Y, Imagita H, Sakata S. Possible effects of whole body vibration on bone properties in growing rats. Osteoporos Sarcopenia. 2019;5(3):78-83. doi:10.1016/j.afos.2019.07.001
  34. Nagdalian AA, Oboturova NP, Krivenko DV, Povetkin SN, Blinov AV, Verevkina MN, et al. Why does the protein turn black while extracting it from insect biomass? J Hyg Eng Des. 2019;29:145-50.
  35. Ansori AN, Widyananda MH, Antonius Y, Murtadlo AA, Kharisma VD, Wiradana PA, et al. A review of cancer-related hypercalcemia: Pathophysiology, current treatments, and future directions. J Med Pharm Chem Res. 2024;6(7):944-52. doi:10.48309/jmpcr.2024.435280.1088
  36. Thalacker-Mercer A, Riddle E, Barre L. Protein and amino acids for skeletal muscle health in aging. Adv Food Nutr Res. 2020;91:29-64. doi:10.1016/bs.afnr.2019.08.002
  37. Hoshi T, Heinemann S. Regulation of cell function by methionine oxidation and reduction. J Physiol. 2001;531(Pt 1):1-11. doi:10.1111/j.1469-7793.2001.0001j.x
  38. Wei F, Locasale JW. Methionine restriction and antitumor immunity. Trends Cancer. 2023;9(9):705-6. doi:10.1016/j.trecan.2023.07.008
  39. Newberne PM, Suphiphat V, Locniskar M, de Camargo JL. Inhibition of hepatocarcinogenesis in mice by dietary methyl donors methionine and choline. Nutr Cancer. 1990;14(3-4):175-81. doi:10.1080/01635589009514092
  40. Wan J, Liu H, Chu J, Zhang H. Functions and mechanisms of lysine crotonylation. J Cell Mol Med. 2019;23(11):7163-9. doi:10.1111/jcmm.14650
  41. Azevedo C, Saiardi A. Why always lysine? The ongoing tale of one of the most modified amino acids. Adv Biol Regul. 2016;60:144-50. doi:10.1016/j.jbior.2015.09.008
  42. Kodama M, Nakayama KI. A second Warburg-like effect in cancer metabolism: The metabolic shift of glutamine-derived nitrogen: A shift in glutamine-derived nitrogen metabolism from glutaminolysis to de novo nucleotide biosynthesis contributes to malignant evolution of cancer. Bioessays. 2020;42(12):e2000169. doi:10.1002/bies.202000169
  43. Santoso KH, Wahyu S, Maulydia M. Neutrophil gelatinase associated lipocalin as biomarker in predicting acute renal tubular injury following general anesthesia with sevoflurane on low-flow anesthesia. J Med Pharm Chem Res. 2024;6(10):1567-82. doi:10.48309/jmpcr.2024.449596.1151
  44. Setyawati AN. The role of oxidative stress in hypoalbuminemia nephropathy related to Nephrotic syndrome: A critical review. J Med Pharm Chem Res. 2024;6(1):32-49. doi:10.48309/jmpcr.2024.182755
 

 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.